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“Neural-Gas” Network for Vector Quantization 
and its Application to Time-Series Prediction

Thomas M. Martinetz, Member, IEEE, Stanislav G. Berkovich, and Klaus J. Schulten

Abstract—As a data compression technique, vector quantiza
tion requires the minimization of a cost function—the distortion 
error—which, in general, has many local minima. In this paper, 
a neural network algorithm based on a “soft-max” adaptation 
rule is presented that exhibits good performance in reaching the 
optimum, or at least coming close. The soft-max rule employed is 
an extension of the standard A'-means clustering procedure and 
takes into account a “neighborhood ranking” of the reference 
(weight) vectors. It is shown that the dynamics of the reference 
(weight) vectors during the input-driven adaptation procedure 1) 
is determined by the gradient of an energy function whose shape 
can be modulated through a neighborhood determining parame
ter, and 2) resembles the dynamics of Brownian particles moving 
in a potential determined by the data point density. The network 
is employed to represent the attractor of the Mackey-Glass 
equation and to predict the Mackey-Glass time series, with 
additional local linear mappings for generating output values. 
The results obtained for the time-series prediction compare very 
favorably with the results achieved by back-propagation and 
radial basis function networks.

I. In t r o d u c t io n

ARTIFICIAL as well as biological information processing 
systems that are involved in storing or transfering large 

amounts of data often require the application of coding tech
niques for data compression. In a wide range of applications, 
including speech and image processing, the data compression 
procedure is based on “vector quantization” techniques (for a 
review see [1]).

Vector quantization techniques encode a data manifold, e.g., 
a submanifold V  C 1ZD, utilizing only a finite set w = 
(wi, ■ ■ ■ ,t»jv) of reference or “codebook” vectors (also called 
cluster centers) wt e  7ZD, i — 1, • • •, N.  A data vector v  € V  
is described by the best-matching or “winning” reference 
vector wup) of w for which the distortion error d(w, U7,(V)), 
e.g., the squared error | | v— is minimal. This procedure 
divides the manifold V  into a number of subregions

Vi = {v £ V |||t; -  Will < ||v -  Wj||V)} (1)

called Voronoi polygons or Voronoi polyhedra, out of which 
each data vector v  is described by the corresponding reference 
vector ra,. If the probability distribution of data vectors over 
the manifold V  is described by P(v),  then the average

Manuscript received November I t ,  1991; revised September 13, 1992. This 
work was supported by the National Science Foundation under Grant DIR-90- 
15561 and by a Fellowship of the Volkswagen Foundation to T. M. Martinetz.

The authors are with the Beckman Institute and the Department of Physics, 
University of Illinois at Urbana-Champaign, Urbana, IL 61801.

IEEE Log Number 9204650.

distortion or reconstruction error is determined by

E = J dDvP{v)(v -  w i{v))2 (2)

and has to be minimized through an optimal choice of refer
ence vectors w,.

The straightforward approach to minimizing (2) would be a 
gradient descent on E  which leads to Lloyd and MacQueen’s 
well-known A-means clustering algorithm [2], [3], In its on
line version, which is applied if the data point distribution 
P(v)  is not given a priori, but instead a stochastic sequence of 
incoming sample data points v(t = 1 ) ,v(t  =  2),v(t  — 3), • • • 
which is governed by P(v)  drives the adaptation procedure, 
the adjustment steps for the reference vectors or cluster centers 
Wi is determined by

AtOi = £ ■ ■ (v(t) -  Wi) i = 1, • • ■, TV (3)

with e as the step size and Sij as the Kronecker delta. However, 
adaptation step (3) as a stochastic gradient descent on E  
can, in general, only provide suboptimal choices of reference 
vectors w; for nontrivial data distributions P(v)  and nontrivial 
numbers of reference vectors, due to the fact that the error 
surface E  has many local minima.

To avoid confinement to local minima during the adaptation 
procedure, a common approach is to introduce a “soft-max” 
adaptation rule that not only adjusts the “winning” reference 
vector i{v) as in (3), but affects all cluster centers depending 
on their proximity to v. One interesting approach of this kind, 
to which we will refer as “maximum-entropy” clustering [4], 
employs the adaptation step

e-/3(V-Wt)2
AWi =  e - —---------------- - ( v - W i )  i = l , - - - , N  (4)

^ 2 e-0 (v -w ,p

3 =  1

which corresponds to a stochastic gradient descent on the cost 
function

E mec =  -  i  [  dDv P(v)  In 5 3  (5)
P i= 1

instead of (2). As we can see in (4), with a data vector v 
not only the “winning” reference vector w*(W) but each w, 
is updated, with a step size that decreases with the distance 
||v — Wi|| between w, and the currently presented v. For

i
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(3 —» oo the cost function E mec becomes equivalent to E.  
Rose et al. [4] have shown what the form of (5) suggests, 
namely that adaptation step (4) is, in fact, a deterministic 
annealing procedure with (3 as the inverse temperature and 
E mec as the free energy. By starting at a high temperature 
which, during the adaptation process, is carefully lowered to 
zero, local minima in E  are avoided. However, to obtain good 
results, the decrement of the temperature has to be very slow. 
In theory it must hold f3 oc In t with t as the number of iteration 
steps (4) performed [5]. Adaptation step (4) is also used in 
the context of “maximum likelihood” approaches where, as 
reported in [6], the goal is to model the data distribution P (v ) 
through overlapping radial basis functions (RBF’s) (adaptation 
step (4) corresponds to Gaussians as RBF’s).

Kohonen’s topology-conserving feature map algorithm 
[7]-[9] is another well-known model that has been applied 
to the task of vector quantization ([10]—[18]) and that 
incorporates a soft-max adaptation rule. In Kohonen’s model 
every reference vector Wi is assigned to a site i of a lattice A. 
Each time a data vector v  is presented, not only the “winning” 
reference vector w ^ V) is adjusted according to (3), but also 
the reference vectors Wi that are assigned to lattice sites i 
adjacent to i(v) are updated, with a step size that decreases 
with the lattice distance between i and i(v). The corresponding 
adaptation step is of the form

Awi  = e ■ ha(i,i(v)) ■ (v -  Wi) * =  1, - - -, JV (6)

with ha(i , j )  as a unimodal function that decreases mono- 
tonically for increasing |\i — j | |  with a characteristic decay 
constant a. For a  =  0, ha(i, j )  = Sij and (6) becomes 
equivalent to the if-means adaptation rule (3). Kohonen’s 
model is particularly interesting since, through (6), a mapping 
between the data space V  and the chosen lattice A  emerges that 
maintains the topology of the input space V  as completely as 
possible [9], [19]. Kohonen’s topology-conserving maps have 
been employed successfully in a wide range of applications, 
from the modeling of biological feature maps found in the 
cortex [20] to technical applications like speech recognition 
[10], [11], [15], image processing [13], [14], and the control 
of robot arms [12], [16]—[18], [21].

Adaptation step (6) provides reasonable distributions of the 
reference vectors with only a small number of iteration steps, 
which is essential especially in technical applications like the 
control of robot arms [12], [16]—[18], [21]. However, to obtain 
good results with Kohonen’s algorithm as a vector quantizer, 
the topology of the lattice A  has to match the topology of the 
space V  which is to be represented. In addition, there exists 
no cost function that yields Kohonen’s adaptation rule as its 
gradient [22], [23]. In fact, as long as a  >  0, one cannot 
specify a cost function that is minimized by (6).

II. T h e  “ N e u r a l -G a s ” A l g o r it h m

In this paper, we present a neural network model which, 
applied to the task of vector quantization, 1) converges quickly 
to low distortion errors, 2) reaches a distortion error E  
lower than that resulting from if-means clustering, maximum- 
entropy clustering (for practically feasible numbers of iteration

steps) and from Kohonen’s feature map, and 3) at the same 
time obeys a gradient descent on an energy surface (like 
the maximum-entropy clustering, in contrast to Kohonen’s 
feature map algorithm). For reasons we will give later, we 
call this network model the “neural-gas” network. Similar 
to the maximum-entropy clustering and Kohonen’s feature 
map the neural-gas network also uses a “soft-max” adaptation 
rule. However, instead of the distance ||» — t»i|| or of the 
arrangement of the t»j’s within an external lattice, it utilizes 
a “neighborhood-ranking” of the reference vectors Wi for the 
given data vector v.

Each time data vector v  is presented, we determine the 
“neighborhood-ranking” ( u ••• ,«/*„_,) of the refer
ence vectors with Wi0 being closest to v , w ^  being second 
closest to v, and Wik, k = 0, • • •, N  — 1 being the reference 
vector for which there are k vectors Wj with ||v — t»j|| < 
||w — If we denote the number k associated with each
vector Wi by ki(v,w),  which depends on v  and the whole set 
w = (tni, • • • , u»jv) of reference vectors, then the adaptation 
step we employ for adjusting the w ,’s is given by

Awi = e ■ hx{h(v ,w) )  ■ (v -  Wi) i = l , - - - , N .  (7)

The step size e € [0,1] describes the overall extent of the 
modification, and h\(ki (v ,w))  is unity for fcj =  0 and 
decays to zero for increasing ki with a characteristic decay 
constant A. In the simulations we describe as follows, we 
chose h\(ki (v ,w))  = e—fci(w,w)/a por _\ _► q, (7) becomes 
equivalent to the K -means adaptation rule (3), whereas for 
A /  0 not only the “winner” wM] but the second closest 
reference vector w , third closest reference vector Wi2, etc., 
is also updated.

As we show in Appendix I, the dynamics of the Wi s obeys 
a stochastic gradient descent on the cost function

1 N  r
Eng(w,^)  = J dDv P(v )hx{ki(v,w)){v -  W i f

(8)
with

N  N - l

c m  =  y . hx{ki) — ^  ] hx(.k)
i—1 k=0

as a normalization factor that only depends on A. E ng is related 
to the framework of fuzzy clustering [24], [25]. In contrast to 
hard clustering where each data point v  is deterministically 
assigned to its closest reference vector «/*(«), fuzzy clustering 
associates v  to a reference vector Wi with a certain degree 
Pi{v), the so-called “fuzzy membership” of r» to cluster i. In 
the case of hard clustering holds Pi0(v) = 1 and Pi(v) = 0 
for * ±  *o. If we choose a “fuzzy” assignment of data point 
v  to reference vector Wi, which depends on whether Wi 
is the nearest, next-nearest, next-next-nearest, etc., neighbor 
of t;, i.e., if we choose Pi(v) = hx(ki(v,w))/C(X),  then 
the average distortion error we obtain, and which has to be 
minimized, is given by E ng, and the corresponding gradient 
descent is given by adaptation rule (7).

T
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Through the decay constant A we can modulate the shape 
of the cost function E ng. For A —» oo the cost function 
E ng becomes parabolic, whereas for A —► 0 it becomes 
equivalent to the cost function E  in (2), i.e., the cost function 
we ultimately want to minimize, but which has many local 
minima. Therefore, to obtain good results concerning the set of 
reference vectors, we start the adaptation process determined 
by (7) with a large decay constant A and decrease A with 
each adaptation step. By gradually decreasing the parameter A 
we expect the local minima of E  to emerge slowly, thereby 
preventing the set w  of reference vectors from getting trapped 
in suboptimal states.

III. T h e  N e t w o r k ’s P e r f o r m a n c e  o n  a  M o d e l  P r o b l e m

To test the performance of the neural-gas algorithm in mini
mizing E  and to compare it with the three other approaches we 
described (if-means clustering, maximum-entropy clustering, 
and Kohonen’s topology-conserving map), we choose a data 
distribution P(v)  for which 1) the global minimum of E  is 
known for large numbers of reference vectors and 2) which 
reflects, at least schematically, essential features of data distri
butions that are typical in applications. Data distributions that 
occur in applications often consist of, eventually separated, 
clusters of data points. Therefore, also for our test we choose 
a model data distribution that is clustered. To be able to 
determine the global minimum, in our model data distribution 
the clusters are of square shape within a two-dimensional 
input space. Since we choose N  = Ax number of  clusters 
and separate the clusters far enough from each other, the 
optimal set of w f s  is given when each of the square clusters 
is represented by four reference vectors, and when the four 
reference vectors within each cluster are arranged in the known 
optimal configuration for a single square.

In Fig. 1 we see the neural-gas adapting into a representation 
of our model data distribution with 15 clusters and N  = 60 
reference vectors. With each adaptation step, a data point 
within one of the squares is stochastically chosen with equal 
probability over each square. Subsequently, adjustments of the 
w f  s according to (7) are performed. We show the initial state, 
the state after 5000, 15 000, and finally after 80 000 adaptation 
steps. In the simulation run depicted in Fig. 1 the neural-gas 
algorithm was able to find the optimal representation of the 
data distribution.

However, depending on the initial choice of the w f s  (cho
sen randomly) and depending on the speed with which the 
parameter A is decreased, i.e., depending on the total number 
of adaptation steps fmax employed, it might happen that the 
reference vectors converge to a configuration that is only close 
but not exactly at the optimum. Therefore, to demonstrate the 
average performance of the neural-gas algorithm we show in 
Fig. 2 the mean distortion error for different total numbers of 
adaptation steps fmax. For each of the different total numbers 
of adaptation steps we averaged over 50 simulation runs, 
for each of which not only the initialization of the w f s  
were chosen randomly but also the 15 clusters of our model 
data distribution were placed randomly. Since we know the 
minimal distortion error E q that can be optimally achieved

-□ Q.. □
□ □E3

□
□ Q - ’ □

□• □ □
■ ' □ □□ □

□ ,

Fig. 1. The neural-gas network representing a data distribution in 772 that 
consists of 15 separated clusters of square shape. On each cluster the density 
of data points is homogeneous. The 60 reference vectors to ; are depicted as 
points. The initial values for the to; ’s are chosen at random, which is shown 
in the top left picture. We also show the state after 5000 (top right), 15 000 
(bottom left), and after 80000 adaptation steps (bottom right). At the end 
of the adaptation procedure the set of reference vectors has converged to 
the optimal configuration, i.e., each cluster is represented by four reference 
vectors.

for our model data distribution and the number of reference 
vectors we employ, we choose a = (_E(tmax) — E q) / E q as 
a performance measure with E{tmax)  as the final distortion 
error reached, a = 0 corresponds to a simulation run which 
reached the global minimum, whereas, e.g., a  =  1 corresponds 
to a very large distortion error, i.e., a distortion error which 
is twice as large as the optimum. As we can see in Fig. 2, 
for fmax =  100 000 the average performance of the neural-gas 
network is a — 0.09, which means that the average distortion 
error E  for fmax =  100 000 is 9% larger than what can be 
optimally achieved.

For comparison, we also show in Fig. 2 the result achieved 
by the If-means clustering, the maximum-entropy clustering, 
and Kohonen’s feature map algorithm. Up to fmax =  8000, 
only the distortion error of the If-means clustering is slightly 
smaller than the distortion error of the neural-gas algorithm. 
For fmax > 8000, all three procedures perform worse than the 
neural-gas algorithm. For a total number of 100 000 adaptation 
steps the distortion error of the maximum-entropy clustering 
is more than twice as large as the distortion error achieved 
by the neural-gas algorithm. Theoretically, for the maximum- 
entropy approach the performance measure a  should converge 
to zero for fmax —> oo. However, as mentioned already in 
the introduction, the convergence might be extremely slow. 
Indeed, all four clustering procedures, including the maximum- 
entropy approach and the neural-gas algorithm, do not improve 
their final distortion error significantly further within the range
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Fig. 2. The performance of the neural-gas algorithm in minimizing the distortion error E  for the model distribution of data points which is described in the 
text and an example of which is shown in Fig. 1. Depicted is the result for different total numbers of adaptation steps tmax • The performance measure is 
(E  — Eo)/Eo  with E q as the minimal distortion error that can be achieved for the type of data distribution and the number of reference vectors we used for 
the test. For comparison we also show the result obtained with the standard A'-means clustering, maximum-entropy clustering, and Kohonen’s feature map 
algorithm. Up to tmax =  8000 only the distortion error of the A'-means clustering is slightly smaller than the distortion error of the neural-gas algorithm. 
For tmax >  8000, the three other approaches perform worse than the neural-gas model. For a total number of 100 000 adaptation steps the distortion error 
of the neural-gas algorithm is smaller by more than a factor of two than the distortion error achieved by the maximum-entropy procedure.

100000 < fmax < 500 000. fmax =  500000 is the limit up to 
which the tests were made.

Fig. 2 demonstrates that the convergence of the neural- 
gas algorithm is faster than the convergence of the three 
other approaches. This is important for practical applications 
where adaptation steps are “expensive,” e.g., in robot control 
where each adaptation step corresponds to a trial movement 
of the robot arm. Applications that require the learning of 
input-output relations, vector quantization networks establish 
a representation of the input space that can then be used 
for generating output values, either through discrete output 
values [26], local linear mappings [12], or through radial 
basis functions [27]. Kohonen’s topology-conserving map as 
a vector quantizer, together with local linear mappings for 
generating output values, has been studied for a number of 
robot control tasks [12], [16]-[18]. However, for the reason 
of faster convergence, we took the neural-gas algorithm for 
an implementation of the learning algorithms [16]—[18] on 
an industrial robot arm [28]. Compared to the versions that 
are based on Kohonen’s feature map and require about 6000 
adaptation steps (trial movements of the robot arm) to reach the 
minimal positioning error [18], only 3000 steps are sufficient 
when the neural-gas network is employed [28].

For the simulations of the neural-gas network as presented 
in Fig. 2 we chose h\ (k)  =  exp (—fc/A) with A decreasing 
exponentially with the number of adaptation steps t as A(<) =  
Ai(Ay/A;)*/*">** with Ai =  10, A/ =  0.01, and tmax € 
[0,100 000]. Compared to other choices for the neighborhood 
function h\(k) ,  e.g., Gaussians, h\(k)  = exp (—fc/A) pro
vided the best result. The step size e has the same time 
dependence as A, i.e., e(t) = ei(ey/ei)t/ tmax with =  0.5

and ef =  0.005. The similarity of the neural-gas network 
and the Kohonen algorithm motivated the time dependence 
x{t) =  Xi ( x f / x i ) t^t"”'x for e and A. This time dependence has 
provided good results in applications of the Kohonen network 
[16]—[18]. The particular choice for A,, Ay,6;, and ey is not 
very critical and was optimized by “trial and error.” The only 
simulation parameter of the the adaptive if-means clustering is 
the step size e, which was chosen in our simulations identical 
to that of the neural-gas algorithm. In contrast to the three other 
vector quantization procedures, the final result of the if-means 
clustering depends very much on the quality of the initial 
distribution of the reference vectors u>;. Therefore, to avoid a 
comparison in favor of the neural-gas network, we initialized 
the if-means algorithm more prestructured by exploiting a 
priori knowledge about the data distribution. Rather than 
initializing the ti/j’s totally at random, they were randomly 
assigned to vectors lying within the 15 clusters. This choice 
prevents that some of the codebook vectors remain unused. 
For the Monte Carlo simulations of the maximum-entropy 
clustering the step size e was also chosen as for the neural-gas 
algorithm. The inverse temperature (3 had the time dependence 
/3(t) =  Pi(Pf /Pi)t/ tm!'x with /?, =  1 and /3y =  10000. This 
scheduling of (3 provided the best results for the range of 
total numbers of adaptation steps £max that was investigated. 
Also for Kohonen’s feature map algorithm the step size e 
was chosen as for the neural-gas algorithm and the other two 
clustering procedures. The function that determines
the neighborhood relation between site i and site j  of the 
lattice A  of Kohonen’s feature map algorithm was chosen to 
be a Gaussian of the form ha(i , j )  = exp (—||i — j \ \2/2a 2) 
[9], [16]-[18]. The decay constant a, like A, decreased with

T



the adaptation steps t according to er(t) =  a,{er f  /
with Oi =  2 and <77 =  0.01. The values for <Ji and <7/ were
optimized.

IV. “G a s -l ik e ” d y n a m ic s  o f  t h e  R e f e r e n c e  V e c t o r s

In this section we clarify the name neural-gas and give 
a quantitative expression for the density distribution of the 
reference vectors.

We define the density g[u) of reference vectors at location 
« of V  C  7ZD through g(u) =  F^u) with i(u) being the 
reference vector closest to u  and Ft(u) being the volume 
of Voronoi polygon V^u)- According to the definition of V), 
which was given in (1), «  e  ^i(u) is valid. Hence, g(u) is a 
step function that is constant on each Voronoi polygon Vi. In 
the following, we study the case where the Voronoi polygons 
change their size Fl slowly from one Voronoi polygon to the 
next. Then we can regard g(u) as being continuous, which 
allows to derive an expression for g>(u)’s dependence on the 
density distribution of data points.

For a given v, the density distribution g(u) determines the 
numbers ki (v ,w) , i  =  1 — which are necessary for an 
adjustment of the reference vectors Wi. ki(v,w)  is the number 
of reference vectors within a sphere centered at v  with radius 
||w -  i.e.,

ki(v,w) = I  q{v  +  u) dPu. (9)
7||U||<||i;-W,||

In the following, we look at the average change (AWi) of a 
reference vector with an adaptation step (7), given through

(Awi) =  e J dDv P(v)hx(ki(v,w))(v -  Wi). (10)

In case of a small decay constant A, i.e., a A for which the 
range of h\(ki{v,w))  is small compared to the curvature 
of P(u) and g(u), we may expand the integrand of (10) 
around Wi since only the data points v  for which ||t> — Wj|| 
is a small contribute to the integral. If, as in the simulations 
described previously, A decreases against zero with the number 
of adaptation steps, the range of h\(ki (v ,w))  will always 
become that small at some point during the adaptation process.

The expansion of the integrand together with (9) yields to 
the leading order in A

(■&w i) «  d ( a« p (u) -  ‘2̂ - ^ d u g{u)Sj . (11)

du  denotes the gradient with respect to the coordinates of the 
data space. Equation (11) states that the average change of a 
reference vector Wi at location «  is determined by two terms, 
one which is proportional to du P(u)  at u, and one which is 
proportional to duQ(u) a t«. The derivation of (11) is provided 
in Appendix II.

Equation (11) suggests the name neural-gas for the al
gorithm introduced. The average change of the reference 
vectors corresponds to an overdamped motion of particles 
in a potential V  (u) that is given by the negative data point 
density, i.e., V (u) = —P(u). Superimposed on the gradient 
of this potential is a “force” proportional to —dug,  which 
points toward the direction of the space where the particle
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density g(u) is low. This “force” is the result of a repulsive 
coupling between the particles (reference vectors). In its form 
it resembles an entropic force and tends to homogeneously 
distribute the particles (reference vectors) over the input space, 
like in case of a diffusing gas.

The stationary solution of (11), i.e., the solution of

a r >  2 +  -D .P
du p ------ ~------dug =  oD g

is given by

e(u) oc P(u)T (12)

with
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This relation describes the asymptotic density distribution 
of the reference vectors Wi and states that the density g(u) 
of reference vectors at location tt is nonlinearly proportional 
to the density of data points P (u). An asymptotic density 
distribution of the reference vectors that is proportional to 
P (u )7 with 7 =  D /( D  + 2) is optimal for the task of 
minimizing the average quadratic distortion error (2) [29],

We tested (13) for a one-dimensional data distribution, 
i.e., for D  =  1. For this purpose we chose a data density 
distribution of the form P{u)  =  2u, u € [0,1] and N  =  
50 reference vectors. The initial values for Wi € TZ were 
drawn randomly from the interval [0, 1]. For the parameters 
e and A we chose the small but finite values e =  0.01 
and A =  2, which were kept constant during a subsequent 
performance of 5000000 adaptation steps (7). A double- 
logarithmic evaluation of the final result, i.e., of the 50 data 
pairs Xi =  Wi,yi =  g(wi) =  2/(u;i+i -  =  1, • • • ,50,
yielded 7 =  0.323, which compares well to the theoretical 
value 7 =  0.333 given by (13) for D — 1.

V . O n  t h e  C o m p l e x it y  o f  t h e  N e u r a l -G a s  N e t w o r k

The computationally expensive part of an adaptation step 
of the neural-gas algorithm is the determination of the 
“neighborhood-ranking,” i.e., of the ki , i  =  1, In
a parallel implementation of the neural-gas network, each 
reference vector can be assigned to a computational unit i. 
To determine its ki, each unit i has to compare the distance 
||v —1«,|| of its reference vector to the input v  with the distance 
||w — tfljll of all the other units j ,  j  = 1, • ■ •, N.  If each unit 
performs this comparison in a parallelized way, each unit i 
needs 0 (lo g A ) time steps to determine its “neighborhood- 
rank” ki. In a subsequent time step, each computational 
unit adjusts its w t according to equation (7). Hence, in a 
parallel implementation the computation time required for an 
adaptation step of the neural-gas algorithm increases like log/V 
with the number N  of reference vectors.

A scaling like logTV is an interesting result since the 
computation time for an adaptation step of a “winner-take-all” 
network like the if-means clustering algorithm, which requires 
much less computation because only the “winning” unit has to 
be determined, also scales like logiV in a parallel implemen
tation. In a serial implementation, of course, the computation
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time required for an adaptation step of the neural-gas algorithm 
increases faster with N  than the corresponding computation 
time for a step of the if-means clustering. Determining the 
ki , i  = 1, • • •, N  in a serial implementation corresponds to 
sorting the distances ||v — =  1 which scales
like N  log N.  Searching for the smallest distance | |w — wi011 to 
perform a step of the if-means clustering scales only linearly 
with the number of reference vectors.

VI. A pp l ic a t io n  t o  T im e -Se r ie s  P r e d ic t io n

A very interesting learning problem is the prediction of a 
deterministic, but chaotic, time-series, that we want to take 
as an application example of the neural-gas network. The 
particular time series we choose is the time-series generated by 
the Mackey-Glass equation [30]. The prediction task requires 
to learn an input-output mapping y  =  f ( v)  of a current state 
v  of the time-series (a vector of D  consecutive time-series 
values) into a prediction of a future time-series value y. If 
one chooses D  large enough, i.e., D = 4 in the case of 
the Mackey-Glass equation, the D -dimensional state vectors 
v  all lie within a limited part of the £>-dimensional space 
and form the attractor V  of the Mackey-Glass equation. In 
order to approximate the input-output relation y =  f ( v )  we 
partition the attractor’s domain into N  smaller subregions 
Vi,i = 1, ■ • ■, TV and complete the mapping by choosing 
local linear mappings to generate the output values y on each 
subregion Vi. To achieve optimal results by this approach, 
the partitioning of V  into subregions has to be optimized by 
choosing V i ’s the overall size of which is as small as possible.

A way of partitioning V  is to employ a vector quantization 
procedure and take the resulting Voronoi polygons as subre
gions Vi. To break up the domain region of an input-output 
relation by employing a vector quantization procedure and to 
approximate the input-output relation by local linear mappings 
was suggested in [12]. Based on Kohonen’s feature map 
algorithm, this approach has been applied successfully to 
various robot control tasks [12], [16]—[18] and has also been 
applied to the task of predicting time series [31]. However, 
as we have shown in Section III, for intricately structured 
input manifolds the Kohonen algorithm leads to suboptimal 
partitionings and, therefore, provides only suboptimal approx
imations of the input-output relation y =  f (v) .  The attractor 
of the Mackey-Glass equation forms such a manifold. Its 
topology and fractal dimension of 2.1 for the parameters 
chosen makes it impossible to specify a corresponding lattice 
structure. For this reason, we employ the neural-gas network 
for partitioning the input space V, which allows to achieve 
good or even optimal subregions Vi, also in the case of 
topologically intricately structured input spaces.

A hybrid approximation procedure that also uses a vector 
quantization technique for preprocessing the input domain to 
obtain a convenient coding for generating output values has 
been suggested by Moody and Darken [27], In their approach, 
preprocessing the input signals, for which they used the K-  
means clustering, serves the task of distributing the centers u/; 
of a set of radial basis functions, i.e., Gaussian’s, over the input 
domain. The approximation of the input-output relation is

then achieved through superpositions of the Gaussians. Moody 
and Darken demonstrated the performance of their approach 
also for the problem of predicting the Mackey-Glass time- 
series. A comparison of their result with the performance 
we achieve with the neural-gas network combined with local 
linear mappings is given below.

A. Adaptive Local Linear Mappings
The task is to adaptively approximate the function y = f ( v)  

with v £ V  C 1ZD and y  £ 1Z.V denotes the function’s 
domain region. Our network consists of N  computational 
units, each containing a reference or weight vector Wi (for 
the neural-gas algorithm) together with a constant yi and a 17- 
dimensional vector a, . The neural-gas procedure assigns each 
unit i to a subregion V, as defined in (1), and the coefficiants 
yi and a; define a linear mapping

y = Vi + O i - { v -  Wi) (14)

from 1ZD to 7Z over each of the Voronoi polyhedra Vi. Hence, 
the function y = f ( v)  is approximated by y = f ( v)  with

/(» )  =  Vi{v) +«i(w) • (v -  Wi(V)). (15)

i(v) denotes the computational unit i with its w, closest to v.
To learn the input-output mapping we perform a series of 

training steps by presenting input-output pairs (v,y = /(» )). 
The reference vectors Wi are adjusted according to adaptation 
step (7) of the neural-gas algorithm. To obtain adaptation rules 
for the output coefficients yi and <n, for each i we require the 
mean squared error Jv . dDvP(v){f ( v)  -  f ( v ) )2 between the 
actual and the required output, averaged over subregion Vi, to 
be minimal. A gradient descent with respect to yi and a; yields

A yi =e'  dDv P{v)(y -  yi -  Oi ■ (v -  ))
J V i

= e' [  dDv P(v)6u(v){y - y i - a i - ( v -  Wi)) (16)
Jv

and

Aai = e' /  dDv P(v)(y -  y{ -  ai • (v -  w;)) • (v -  Wi)
Jv,

=  e' / dDv P(v)6mV){y -  yi -  ■ (v -  w ^)
Jv

■(v -Wi ) .  (17)

For A —> 0 in adaptation step (7) the neural-gas algorithm 
provides an equilibrium distribution of the Wi’s for which 
Jv, dDvP(v) (v  —Wi) = 0 for each i, i.e., td e n o te s  the center 
of gravity of the subregion Vi. Hence, Jv  dDvP(v)ai(v — Wi) 
in (16) vanishes and the adaptation step for the yC s takes 
on a form similar to the adaptation step of the w^s,  except 
that only the output of the “winner” unit is adjusted with a 
training step. To obtain a significantly faster convergence of 
the output weights yi and a,, we replace 6a(v) in (16) and (17) 
by h\i(ki(v,w)) ,  which has the same form as h\(ki (v ,w))  in 
adaptation step (7), except that the decay constant A' might be 
of a different value than A. By this replacement we achieve 
that the yi and ai of each unit is updated in a training step,
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Fig. 3. The temporal evolution of the neural-gas while adapting to a representation of the Mackey-Glass attractor. Presented is a three-dimensional projection 
of the distribution of the reference vectors (big dots) at four different stages of the adaptation procedure, starting with a very early state at the top left part of 
this figure. The final state is shown at the bottom right. The small dots depict already presented inputs v, forming the attractor which has to be partitioned.

with a step size that decreases with the unit’s “neighborhood- 
rank” to the current input v. In the beginning of the training 
procedure, A' is large and the range of input signals that affect 
the weights of a unit is large. As the number of training steps 
increases, A' decreases to zero and the fine tuning of the output 
weights to the local shape of f(v") takes place. Hence, in their 
on-line formulation, the adaptation steps we use for adjusting 
Ui and a, are given by

Ayi — e ■ hy (k i( v ,w))  • (y -  yi)
Adi - e  ■ h\ ' (ki(v ,w))  - { y - y i - a i - { v  - W i ) )  • (w -  Wi).

(18)

B. Prediction of  the Mackey-Glass Time Series

The time series we want to predict with our network 
algorithm is generated by the Mackey-Glass equation

. a xi t  — r)
x(t) = 0x(t)  + -  - ----- ^

1 -f x(t  — r ) iu

with parameters a = 0.2,0 = -0 .1 , and r  =  17 [30], x(t)  is 
quasi-periodic and chaotic with a fractal attractor dimension 
2.1 for the parameter values we chose. The characteristic time 
constant of x(t)  is tchar =  50, which makes it particularly 
difficult to forecast x( t  +  At)  with A t  > 50.

Input v  of our network algorithm consists of four past values 
of x(t),  i.e.,

v  =  (x{t) ,x(t  -  6) ,x( t  — 12), x{t  -  18)).

Embedding a set of time-series values in a state vector is 
common to several approaches, including those of Moody 
and Darken [27], Lapedes and Farber [32], and Sugihara 
and May [33]. The time span we want to forecast into the 
future is A t =  90. For that purpose we iteratively predict 
x( t  + 6), x( t  -t-12), etc., until we have reached x( t  + 90) after 
15 of such iterations. Because of this iterative forecasting, the 
output y which corresponds to v  and which is used for training 
the network is the true value of x{t  +  6).

We studied several different training procedures. First, we 
trained several networks of different sizes using 100000 
to 200 000 training steps and 100000 training pairs v = 
(x( t ) ,x( t  — 6) ,x (t  — 12),x(t  — 18)),?/ =  x(t  -|- 6). One 
could deem this training as “on-line” because of the abundant 
supply of data. Fig. 3 presents the temporal evolution of the 
neural-gas adapting to a representation of the Mackey-Glass 
attractor. We show a three-dimensional projection of the four
dimensional input space. The initialization of the reference 
vectors, presented in the top left part of Fig. 3, is random. After 
500 training steps, the reference vectors have “contracted” 
coarsely to the relevant part of the input space (top right). 
With further training steps (20 000, bottom left), the network 
assumes the general shape of the attractor, and at the end of the 
adaptation procedure (100000 training steps, bottom right), 
the reference vectors are distributed homogeneously over 
the Mackey-Glass attractor. The small dots depict already- 
presented inputs v, whose distribution is given by the shape 
of the attractor.

1
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Fig. 4. The normalized prediction error versus the size of the network. 
The neural-gas algorithm combined with local linear mappings (1) compares 
well against Moody and Darken’s A'-means RBF method (2) and against 
back-propagation (3). To obtain the same prediction error, the K -means RBF 
method requires about 10 times more weights than the neural-gas algorithm 
with local linear mappings.

Fig. 4 shows the normalized prediction error as a function 
of network size. The size of a network is the number of its 
weights, with nine weights per computational unit (four for 
each Wi and a;, plus one for t/j). The prediction error is 
determined by the rms value of the absolute prediction error 
for A t  =  90, divided by the standard deviation of x(t).  
As we can see in Fig. 4, compared to the results Moody 
and Darken obtained with A'-means clustering plus radial 
basis functions [27], the neural-gas network combined with 
local linear mappings requires about 10 times fewer weights 
to achieve the same prediction error. The horizontal line in 
Fig. 4 shows the prediction error obtained by Lapedes and 
Farber with the back-propagation algorithm [32]. Lapedes and 
Farber tested only one network size. On a set of only 500 
data points they achieved a normalized prediction error of 
about 0.05. However, their learning time was on the order 
of an hour on a Cray X-MP. For comparison, we trained 
a network using 1000 data points and obtained the same 
prediction error of 0.05, however, training took only 90 s 
on a Silicon Graphics IRIS, which achieves 4MFlops for 
LINPACK benchmarks. To achieve comparable results, Moody 
and Darken employed about 13 000 data points, which required 
1800 s at 90 KFLops. Hence, compared to our learning 
procedure, Moody and Darken’s approach requires a much 
larger data set but is twice as fast. However, because of 
possible variations in operating systems and other conditions, 
both speeds can be considered comparable.

Fig. 5 shows the results of a study of our algorithm’s 
performance in an “off-line” or scarce data environment. We 
trained networks of various sizes through 200 epochs (or 
200000 steps, whichever is smaller) on different sizes of 
training sets. Due to the effect of overfitting, small networks 
achieve a better performance than large networks if the training 
set of data points is small. With increasingly large amounts 
of data the prediction error for the different network sizes 
saturates and approaches its lower bound.

Fig. 5. The normalized prediction error versus training set size for different 
network sizes. Due to the effect of overfitting, small networks achieve a better 
performance than large networks if the training set of data points is small. 
With increasingly large amounts of data, the prediction error for the different 
network sizes approaches its lower bound.

As in the simulations described in Section III, the parameters 
e, A,e', and A' had the time dependence x  =  X{[xf j x i f ! tm̂  
with t as the current and imax as the total number of training 
steps. The initial and final values for the simulation parameters 
were €i =  0.99, e/ =  0.001; A{ =  N / 3 ,X f  =  0.0001; =
0.5, e'j =  0.05; A[ =  N / 6, and \ ' j  = 0.05. As in the 
simulations of Section III, the particular choice for these 
parameter values is not very critical and was optimized by 
trial and error. Both h\(k)  and hy(k )  decreased exponentially 
with k.

VII. D is c u s s io n

In this paper we presented a novel approach to the task of 
minimizing the distortion error of vector quantization coding. 
The goal was to present an approach that does not require 
any prior knowledge about the set of data points and, at 
the same time, converges quickly to optimal or at least near 
optimal distortion errors. The adaptation rule we employed 
is a soft-max version of the A'-means clustering algorithm 
and resembles to a certain extent both the adaptation rule 
of the maximum-entropy clustering and Kohonen’s feature 
map algorithm. However, compared to the maximum-entropy 
clustering, it is a distance ranking instead of the absolute 
distance of the reference vectors to the current data vector 
that determines the adaptation step. Compared to Kohonen’s 
feature map algorithm, it is not the neighborhood ranking 
of the reference vectors within an external lattice but the 
neighborhood-ranking within the input space that is taken into 
account.

We compared the performance of the neural-gas approach 
with K  -means clustering, maximum-entropy clustering, and 
Kohonen’s feature map algorithm on a model data distribution 
which consisted of a number of separated data clusters. On 
the model data distribution we found that 1) the neural-gas 
algorithm converges faster and 2) reaches smaller distortion 
errors than the three other clustering procedures. The price for 
the faster convergence to smaller distortion errors, however,
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is a higher computational effort. In a serial implementation 
the computation time of the neural-gas algorithm scales like 
TV log TV with the number TV of reference vectors, whereas 
the three other clustering procedures all scale only linearly 
with TV. Nonetheless, in a highly parallel implementation 
the computation time required for the neural-gas algorithm 
becomes the same as for the three other approaches, namely 
O(logTV).

We showed that, in contrast to Kohonen’s feature map 
algorithm, the neural-gas algorithm minimizes a global cost 
function. The shape of the cost function depends on the 
neighborhood parameter A, which determines the range of the 
global adaptation of the reference vectors. The form of the cost 
function relates the neural-gas algorithm to fuzzy clustering, 
with an assignment degree of a data point to a reference 
vector that depends on the reference vector’s neighborhood 
rank to this data point. Through an analysis of the average 
change of the reference vectors for small but finite A, we 
could demonstrate that the dynamics of the neural-gas network 
resembles the dynamics of a set of particles diffusing in 
a potential. The potential is given by the negative density 
distribution of the data points, which leads to a higher density 
of reference vectors in those regions where the data point 
density is high. A quantitative relation between the density 
of reference vectors and the density of data points could be 
derived.

To demonstrate the performance of the neural-gas algorithm, 
we chose the problem of predicting the chaotic time-series 
generated by the Mackey-Glass equation. The “neural-gas” 
network had to form an efficient representation of the un
derlying attractor, which has a fractal dimension of 2.1. The 
representation (as a discretization of the relevant parts of the 
input space) was utilized to learn the required output, i.e., a 
forecast of the time-series, by using local linear mappings. 
A comparison with the performance of /V-means clustering 
combined with radial basis functions showed that the neural- 
gas network requires an order of magnitude fewer weights 
to achieve the same prediction error. Also, the generalization 
capabilities of the neural-gas algorithm combined with local 
linear mappings compared favorably with the generalization 
capabilities of the RBF-approach. To achieve identical accu
racy, the RBF-approach requires a training data set that is 
larger by an order of magnitude than the training data set 
which is sufficient for a neural-gas network with local linear 
mappings.

A p p e n d ix  I
We show that the dynamics of the neural-gas network, 

described by adaptation step (7), corresponds to a stochastic 
gradient descent on a potential function. For this purpose we 
prove the following:

Theorem: For a set of reference vectors w  =  (wj , • • ■, Wn ), 
Wi £ 7lD and a density distribution P(v)  of data points 
v  e 1ZD over the input space V  C 7lD, the relation

[  dPv P(v )h\ (k i( v,w) )(v - Wi) = (19)
JV OWi

with

is valid. kj{v,w)  denotes the number of reference vectors wi 
with ||v — w i || < ||v —

Proof: For notational convenience we define di(v) = v —Wi. 
This yields

QE1 f
~ d v r = R i  +  J  d° V P (v)h>'(ki(v ' w))(v ~ Wi) (21)

with

Ri = ~ \ Y ^ J v  dDvP(v)h'x {kj{v, w)) d] • (22)

h 'x(•) denotes the derivative of We have to show that
Ri vanishes for each i =  1, • • •, TV.

For kj (v ,w)  the relation

N

kj (v,w) = ' £ e ( d 2 - d 2) (23)
(=1

is valid, with O(-) as the Heavy side step function

e{x) = 1, fora: > 0 
0, fora: < 0.

The derivative of the Heavyside step function 6(x) is the delta 
distribution 6(x) with

S(x) = 0  fora; 0

and

J 6(x) dx =  1.

This yields

Ri
r N
/  dDvP(v)h'x (ki(v,«/))d2i d% V  S(d2 -  d2) 

J v  TA

Each of the TV integrands in the second term of (24) is 
nonvanishing only for those v ’s for which d2 = d2 is valid, 
respectively. For these v ’s we can write

N

kj (v,w) = ' £ 0 ( d 2j - d 2) 
i=i

= j 2 o ( d 2 - d 2)
i=i

= ki(v,w),  (25)
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and, hence, we obtain

r N
Ri =  /  dDvP(v)h'x(ki(v,w)) d2 di £  S(d2 -  d2)

[ V  N

-  /  d ^ t , ) / ^ ^ , «,)) d2 ̂  5 ]  5(d2 -  d2).
7 J=1

(26)

Since 6(x) — S(—x)  is valid, Ri  vanishes for each i =

A p p e n d ix  II
In the following we provide a derivation of (6). The average 

change (Awt) of a reference vector with adaptation step (7) 
is given by

(AWi) = e [  dDv  P(v )h\ (k i( v,w) )(v -  Wi) (27) 
Jv

with h\(ki(v,  w )) being a factor that determines the size of the 
adaptation step and that depends on the number ki of reference 
vectors Wj being closer to v  than w t . We assume h\(ki )  to be 
unity for ki =  0 and to decrease to zero for increasing fc, with 
a characteristic decay constant A. We can express k i (v ,w) by

ki(v,w) — I g(v + u ) d Du (28)
JWuWKWv-WiW

with g(u) as the density distribution of the reference vectors 
in the input space V  =  1ZD.

For a given set w  =  (wi,  ■ ■ ■, w n ) of reference vectors, 
ki(v,w)  depends only on r  =  v — Wi and, therefore, we 
introduce

x ( r ) = r - k i (r)1/ D. (29)

In the following we assume the limit of a continuous distri
bution of reference vectors u>;, i.e., we assume g(u) to be 
analytical and nonzero over the input space V. Then, since 
g(u) > 0, for a fixed direction f ,x ( r )  increases strictly 
monotonically with ||r || and, therefore, the inverse of x(r), 
denoted by r(x ), exists. This yields for (27)

(AtOi) = e f  P(w i + r (x ) )h \ ( xD)r(x) J(x)  dDx  (30) 
Jv

with J(x)  =  det ( d r ^ / d x ^ ,  n , v  = 1, • • ■, D  and x  =  ||x ||.
We assume h\ (k i (v  — Wi)) to decrease rapidly to zero with 

increasing ||« — i.e., we assume the range of h\(ki(r))
within V  to be small enough to be able to neglect any higher 
derivatives of P(u)  and g(u) within this range. Then we may 
replace P(wi  4- r(x )) and J(x ) in (30) by the first terms of 
their Taylor expansion around x  = 0, yielding

(At»i) =€ j  hx {xD) ^P(u/i) +  xM

• ^7(0) +  Xp -\-----^ r(x) dDx.  (31)

The Taylor expansion of r(x ) can be obtained by determin
ing the inverse of x (r) in (29) for small ||x ||. For small ||r ||

(it holds ||u || <  ||r || in (28)), the density g(v +  u) in (28) 
is given by

g(v  +  « )  -  g(wi +  r  +  u )

=  e(wi) +  (r +  u)dre{wi) + 0 ( r 2) (32)

with dr  =  d/dr.  Together with (29), this yields

x (r) =  r{TDg(wi))1/D ^1 +  r  +  ^ ( r 2)^ (33)

with
rD / 2

TD =
n f  +  i

(34)

as the volume of a sphere with radius one in dimension D.  As 
the inverse of (33) we obtain for small ||x ||

r(x) =  x(TDg)~1/D (1  -  (TDg)~1/DX + 0 ( x 2)^

6 (35)
which yields the first terms of the Taylor expansion of r(x) 
around x  =  0.

Because of (35) it holds
dr^jx)

d x v
=  S^u(t d 0)~1/D

-  (1 -  6^ ^ e r 2/D^ ~  +  < V (* 2) (36)

and, therefore,
d P  dP^dr
dx  dr  dx

=  (t'De)~1,DdrP (37)

is valid at x  =  0.
The off-diagonal terms in (36) contribute only in quadratic 

order to 7(x) =  det (dr)Lj d x v). Considering the diagonal 
terms up to linear order in x  yields

J(x)  = (TDg) ^ l - i r o g )  1/D ^1 +  ^ +<D(x

and, therefore,

!)
(38)

£  =  - < ™ ) - < ™ " > > ( l  +  i ) I * .  (39)

is valid at x  =  0.
Taking into account (35), (37)-(39) we obtain, for (31),

(A Wi)

= e(TDg y 1/D J x h x(xD)(P(wi)

+  {TDg)~1/Dx - d r P  + ---)
\ - [ i + ( i / d )]£_' ®re■ ( ( t dQ) 1 -  ( l  + +

(40)

T


