

Prospects of "Unipolymer" application in marine ecology

K.A. Lukyanenko*, D.I. Marianchik,

I.A. Denisov, A.S. Yakimov, A.A. Zimin,

V.M. Melkozerov, P.I. Belobrov, S.I. Vasiliev.

*kirill.lukyanenko@gmail.com

Spain, Cadiz, 8 – 10 July, 2013

Structure of presentation

Polymer composite "Unipolymer"

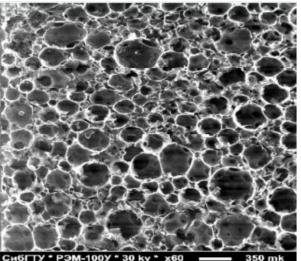
- Cooperation proposals towards:
 - "Unipolymer" application in marine ecology
 - Biosensors development

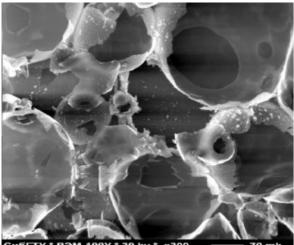
Polymer composite "Unipolymer"

- Developed at Siberian Federal University about a decade ago.
- Patented:

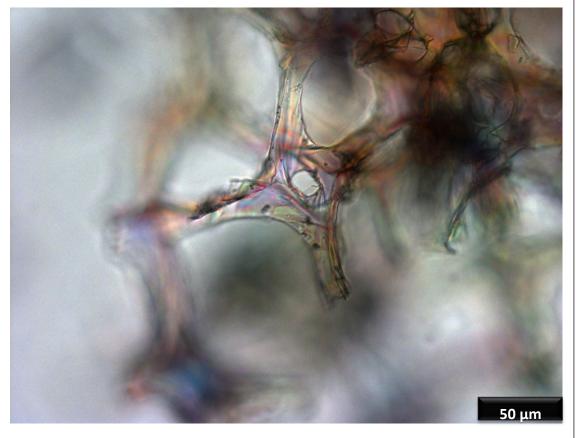
WO 03/055596 A1 RU 2411267 C1

Unipolymer-M & Unipolymer-bio




Picture of Unipolymer-M

Mesh structure of the polymer


SEM images of "Unipolymer"

slice (Mironov et.al. 2007)

СибГТУ * РЭМ-100У * 30 kv * x300

Optical Microscopy of "Unipolymer" © MOLPIT

Properties of the polymer

Property	Value
Density of the initial composite	4 – 25 kg/m ³
Humidity	0-6 %
Buoyancy	100 %
Sorbent capacity	43 – 67 g oil / g sorbent
Sorption rate	0.8 – 1.5 mm oil / s
Return of collected oil	95 – 97 %
Working temperature	– 25 + 300 °C
Biodegradability	100 %
The porosity of the sorbent	Up to 93 %
Desorption	0 %
Flammability	Weakly flammable

The mechanism of sorption

• Wetting of oil by "Unipolymer"

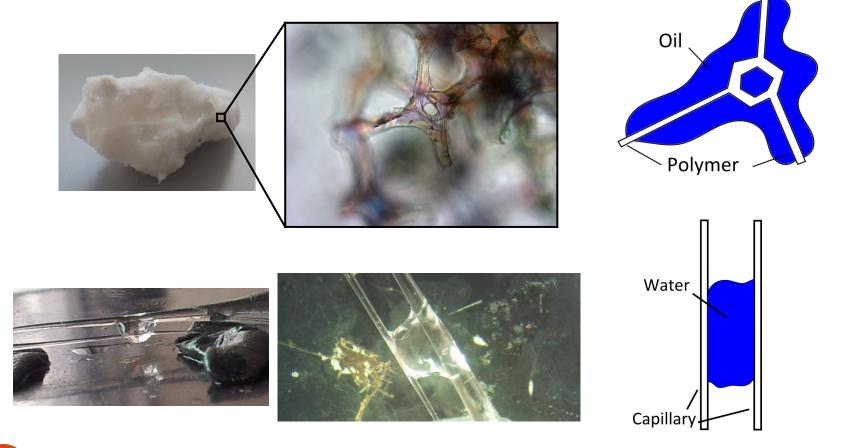


Illustration of wetting power by the example of the glass capillary and water

Applications of Unipolymer-M & Unipolymer-bio

Oil sorbent

Soil former

As a matrix for (marine) bacteria

Thermal insulation covering for northern soils

Thermal insulation material for houses

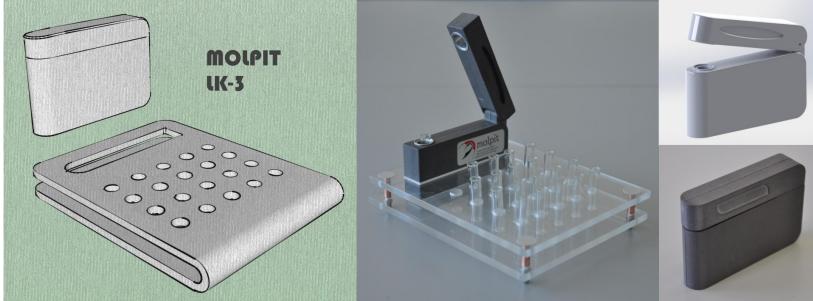
1st proposal. How to use "Unipolymer" in marine ecology?

Subject for collaborative study:

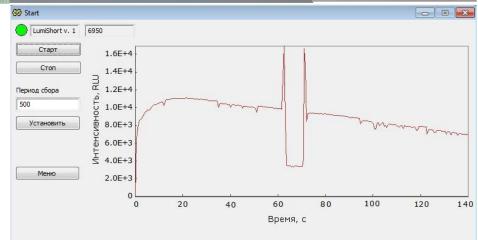
 Investigate biophysics of "Unipolymer" to improve marine ecological safety
Areas for studies:

Joint research of "Unipolomer" characteristics for marine ecology

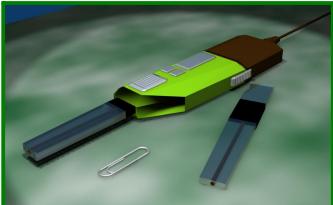
Ecological protection and

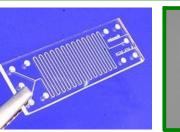

pollution sensor

(e.g. coastal area)



Experimental "in vitro" study of "Unipolymer" at the sea


Development of a portable laboratory for toxicity analysis



 Prototype of portable cuvette bioluminometer has been developed and successfully used

Development of portable bioluminescent biosensors for ecology and medicine Lab-on-a-chip + SiPM + Enzimolum™ = *LumiChip*™

A concept, body,

developed.

personal ecological

electronics and chips for

safety device has been

2nd proposal. Biosensor development

Subject for collaborative study :

 Biosensors development for ecological defense and marine engineering

Areas for studies:

Biosensors development: "Unipolymer" Field testing of biosensors at the sea

Pick up notes (10.07.13) Thoughts for round table

Let's discuss:

1) Unipolymer sea booms

2) Unipolymer life islands. Why? As Unipolymer forms soils, why don't we form life around Unipolymer?

3) Unipolymer as catalyst for natural aquaculture

