# Physical mechanism of bioluminescence

Zimin A.A., Densov I.A., Belobrov P.I.

The talk with Prof O. Shimomura of 3<sup>rd</sup> Sept. & our report at the Conference «Bioluminescent Biotechnologies», Krasnoyarsk, SibFU of 6<sup>th</sup> Sept. 2013

#### Let's ask the Google: "Physical mechanism of bioluminescence"

|    | 4 results Search Results                                                         |
|----|----------------------------------------------------------------------------------|
| 1. | [DOC]                                                                            |
|    | Table of Contents FA.                                                            |
|    | web.mit.edu/nelman/Public/Table%20of%20Contents_FA.doc                           |
|    | Physical Mechanism of Bioluminescence 14. 2.3.1. DC-Detection of Low-Intensity   |
|    | Bio-reporter Signals                                                             |
| 2. | [PDF]                                                                            |
|    | Noel Elman PhD Thesi MIT Certificate Error                                       |
|    | web.mit.edu/nelman/Public/Noel_Elman_PhD_Thesis.pdf                              |
|    | Physical Mechanism of Bioluminescence14. 2.3.1. DC-Detection of Low-Intensity    |
|    | Bio-reporter Signals                                                             |
| 3. | Физические модели надмолекулярной самоорганизации                                |
|    | earthpapers.net > Биологические науки > Биофизика                                |
|    | Translate this page                                                              |
|    | Belobrov P.I. Physical mechanism of bioluminescence // J.Biolum. Chemilum        |
|    | 1988,- V.2, Nº 4 P.181. A20. Voevodin V.A., Belobrov P.I., Erokhin V.Y. Obtaning |
| 4. | Физические модели надмолекулярной самоорганизации - темы                         |
|    | www.referun.com > > Физика и энергетика                                          |
|    | Translate this page                                                              |
|    | Belobrov P.I. Physical mechanism of bioluminescence // J.Biolum. Chemilum        |
|    | 1988,- V.2, N° 4 P.181. A20. Voevodin V.A., Belobrov P.I., Erokhin V.Y. Obtaning |
|    |                                                                                  |

### Some preliminary notes

- One of us tries to understand the mist more than a quarter century:
  - Belobrov P.I. Physical mechanism of bioluminescence
    // J.Biolum. Chemilum, 2 (4), 181 (1988).
  - He defends the statement (1997):
  - "The physical mechanism of bioluminescence is the charge separation in the chemical excitation of the supramolecular structure of the protein".
  - Now we are thinking:
  - "Physical mechanism of bioluminescence is the band gap formation in the collective electronic states of an emitting center".

### Physical Mechanism of Bacterial Bioluminescence

- <u>http://web.mit.edu/nelman/Public/Noel\_Elman\_PhD\_Thesis.pdf</u>
- Noel M. Elman. Heterodyne Detection of Optical Bioreporters Based on Micro-Opto-Electro-Mechanical-Systems (MOEMS) Methods // PhD Thesis, Tel Aviv Uni., 2006. 199 p.

– 2.2.4. Physical Mechanism of Bioluminescence

- There is more about (1997, докт.дис. ПИ):
  - 6.3. Физический механизм биолюминесценции

#### Mechanism of (bio)luminescence



"Bio" prefix could be misleading: luminescence is described in crystalline materials in terms of interband electron transitions. Dispersion is important. Band theory cannot be used for aperiodic systems: liquids, luminescent protein in water environment, etc. However, relatively large supercell allows to apply band theory even to aperiodic materials

#### "Band structure" of aperiodic systems: liquid water



Conduction band dispersion is significant! Valence band energy has almost no dispersion: no need in k-space sampling Overall: dispersion should be taken into account when considering luminescent molecules in water matrix

D Prendergast, J D Grossman, G Galli // *J Chem Phys* **123** (1), 14501 (2005).

Fig.6. Computed DFT/PBE "band structure" for one representative 32-molecule supercell of liquid water taken from a TIP4P trajectory. The electronic charge density is converged using the Γ point only.

#### Correct DoS of liquid water



- Separate peak (red) occurs near the bottom of the conduction band and then disappears as number of k-points is increased
- k-point sampling is vital for correct conduction band description!

D Prendergast, J D Grossman, G Galli // J Chem Phys 123 (1), 14501 (2005).

## Towards exact physical mechanism of bioluminescence

Now we plan to develop the statement:

- the charge separation in the chemical excitation of the supramolecular structure of the protein (Luciferase) <u>together with</u>:
- the band gap formation in the collective electronic states of joint emitting center: protein, cofactor & water.