
arav2Zhang ARI 12 November 2013 18:52

Domestication Genomics:
Evidence from Animals
Guo-Dong Wang, Hai-Bing Xie, Min-Sheng Peng,
David Irwin, and Ya-Ping Zhang
State Key Laboratory of Genetic Resources and Evolution and Yunnan Laboratory of
Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy
of Sciences, Kunming 650223, China; email: zhangyp@mail.kiz.ac.cn

Annu. Rev. Anim. Biosci. 2014. 2:24.1–24.20

TheAnnual Review of Animal Biosciences is online
at animal.annualreviews.org

This article’s doi:
10.1146/annurev-animal-022513-114129

Copyright © 2014 by Annual Reviews.
All rights reserved

Keywords

domestication genomics, origin, demographic history, artificial
selection

Abstract

Animal domestication has far-reaching significance for human soci-
ety. The sequenced genomes of domesticated animals provide critical
resources for understanding the genetic basis of domestication. Vari-
ous genomic analyses have shed a new light on the mechanism of ar-
tificial selection and have allowed the mapping of genes involved in
important domestication traits. Here, we summarize the published
genomes of domesticated animals that have been generated over the
past decade, as well as their origins, from a phylogenomic point of
view. This review provides a general description of the genomic fea-
tures encountered under a two-stage domestication process. We also
introduce recent findings for domestication traits based on results
from genome-wide association studies and selective-sweep scans for
artificially selected genomic regions. Particular attention is paid to
issues relating to the costs of domestication and the convergent evolu-
tion of genes between domesticated animals and humans.
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INTRODUCTION

The domestication ofwild animals by human beingswas a great revolution.Domesticated animals
dramatically changed human life, allowing a shift from a hunter-gatherer society to a farming
society, and were a prerequisite for the rise of human civilization. Since the agricultural revolu-
tion of the early Neolithic period, approximately 12,000–14,000 years ago (1), humans have
attempted to tamewild animals andbreed them through aprocess of artificial selection, cultivating
their roles as food sources (e.g., meat and milk), commodity producers (e.g., wool and silk), or
workers (e.g., transportation and protection). Some animals, such as the cat, rat, and house
sparrow, became closely associated with humans during the Neolithic age. However, there does
not appear to have been a conscious effort to domesticate these species; rather, their domestication
occurred via natural selection (2). More than 40 animal species were domesticated in several
geographic areas, known as the centers of domestication (3). Some species underwent a single
domestication event within a restricted geographic area (e.g., dog and donkey), whereas others
underwent multiple independent domestications in different regions (e.g., pig and chicken) (4).
Long-standing animal husbandry and controlled breeding have made the behavior and mor-
phological characteristics of domestic animals quite different from their wild ancestors and have
greatly shaped the genetic diversity among breed populations.

The abundance of phenotypic variation seen in domesticated animals provided the seed that led
to Darwinian evolutionary biology (5). Darwin documented variation under domestication (6),
and his observations raised a series of fundamental questions: Where, when, and how did these
domesticated animals originate? What is the genetic basis of the domestication process? What is
the influence of artificial selection, and what are the differences between natural and artificial
selection? Today, sequencing and assembly of genomes is a remarkable strategy for advancing our
understanding of domestication through the development of genome technologies, such as the
whole-genome shotgun (WGS) approach (7), next-generation massively parallel sequencing
(NGS) (8, 9), and even third-generation single-molecule sequencing technologies (10). Genome-
sequencing projects of domesticated animals not only offer very powerful resources for answering
thequestions raisedbyDarwinbut also offer opportunities to explore the genetic basis of economic
traits. In this review, we attempt to summarize the current knowledge on genome projects of
domesticated animals and discuss the origins, demographic history, and artificial selection of these
species. Furthermore, we conclude with a preview of future directions for this field.

GENOMES OF DOMESTICATED ANIMALS

Several technologies were developed to allow de novo assembly of genomes during the human
genome project (11, 12). WGS sequencing, together with the construction of physical maps, was
themost effective approach. By 2009, the genomes of four domesticated animals (dog, cat, taurine
cattle, and horse) and one genome of a wild species (the red junglefowl, the major ancestor of the
chicken) were sequenced and assembled based on this approach (Figure 1).

In 2004, the genome of the red junglefowl (Gallus gallus), a major ancestor of the chicken
(Gallus gallus domesticus), was sequenced. The reference genome was assembled with ∼6.6-fold
coverage of WGS reads generated by Sanger sequencing technology. Sequencing generated 7,486
contigs with a N50 size of 36 kb, and 37 supercontigs (also defined as scaffolds) were generated
with aN50 size of 7.07Mb.Of the 1.05Gbof assembled genome sequence, 933Mbwere localized
to specific chromosomes facilitated by aphysicalmap for the domesticated chicken (13). It isworth
noting that this was the first genome sequence of a wild relative for a domesticated animal (14). As
human’s best friend, the domesticated dog (Canis lupus familiaris) was one of the first domestic
animals (15). The genome of a female from the boxer breed was sequenced and assembled using
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theWGS approach in 2005 (7). A total of 31.5 million sequence reads provided 7.5-fold coverage
of the genome, covering 99% of the euchromatic genome. The genome of an inbred Abyssinian
domesticated cat (Felis catus), another important pet, was produced by the International Cat
Genome Sequencing Consortium (16). The latest assembly (Felis_catus-6.2) was updated in
September 2011 and is composed of 19 chromosomes with a N50 scaffold length of 4.7 Mb and
a N50 contig length of 20.6 kb (http://www.ensembl.org). Mullikin et al. (17) provided a large
collection of single-nucleotide polymorphisms (SNPs) thatmapped across the cat genome through
the light-whole-genome-sequence strategy, allowing the discovery of over three million SNPs.
These genome and SNP data provide an unparalleled opportunity to explore the genetic basis of
the variation inmorphological and behavioral traits, and even diseases, in a domesticated animal
(18, 19).

Taurine cattle, Bos taurus, are the most common type of large, domesticated ungulate. Cattle
were domesticated as livestock, for meat; as dairy animals, for milk and other dairy products; and
as draft animals (11). In 2009, the domesticated cow became the first livestock animal to have
a genome assembly (20). A 2.6-Gb genomewas assembled using approximately 9.5-fold coverage
sequencing data. The domestication of the horse, Equus caballus, enhanced transportation and
warfare capabilities, which played an important role in human exploration of novel territories
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Figure 1

Summary of the published genomes of 11 domesticated animals. The phylogenetic relationship of the domesticated species is shownon the
left, with a summary of the sequencing and assembly method, genome size and characteristics, and reference provided on the right.
Abbreviation: NGS, next-generation sequencing.
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(21–23). The genome of a thoroughbred mare, which is considered to be the epitome of equine
athleticism, was sequenced using a WGS approach. A high-quality draft genome sequence of the
horse (6.8-fold coverage) was released with a 112-kb N50 contig size and a 46-Mb N50 scaffold
size (24).

WGS, together with a physical map, is an effective approach to assemble a genome sequence;
however, generating WGS reads by Sanger sequencing technology is expensive. At present, NGS
technologies provide an alternative but effective way for whole-genome sequencing because of
their improved sequencing throughput and reduced costs (25, 26). The NGS strategy was proven
to be successful with the sequencing of the genome of the giant panda (26), and it has since been
used to sequence the genomes of three domesticated animals: turkey (Meleagris gallopavo) (9), yak
(Bos grunniens) (27), and camel (Camelus bactrianus ferus) (28).

However, genome assemblies using NGS technology cannot locate contigs and scaffolds onto
chromosomes, thus limiting the completeness and accuracy of the resulting genome assemblies
(29). De novo assembly of genomes from only short-read data is a huge bioinformatic challenge;
thus, the construction of a physical map is still extremely helpful. For instance, the assembly of the
pig (Sus scrofa domesticus) genome, which was constructed with Illumina short-read data pro-
duced by the Swine Genome Sequencing Consortium (30), was supplemented by physical maps
generated from bacterial artificial chromosome clones (31). The pig genome (Sscrofa10.2)
comprises 2.60Gbof sequence assigned to 18 autosomes and two sex chromosomes. Similarly, the
duck (Anas platyrhynchos) genome was also assembled based on this combined approach (32).

Constructionofphysicalmaps is, unfortunately, a laborious task.Anewwhole-genomemapping
approach has been developed that generates a highly contiguous assembly for a large genome
without the aid of traditional physical maps (8). First, the Illumina sequencing platform was used
to generate 191.5 Gb of reads for assembling contigs and scaffolds. Second, the high-throughput
whole-genome mapping instrument produced single-molecule restriction maps for generating
superscaffolds using a hybrid assembly approach. Finally, the superscaffolds were anchored to the
29 autosomes and X chromosome based on chromosomal colinearity. This procedure was
successfully used to assemble the goat (Capra hircus) genome (8).

The genomes of additional domestic animals will be sequenced, such as the sheep (Ovis aries)
genome that is being produced by the International SheepGenomicsConsortiumand is nowonline
at Ensembl (http://pre.ensembl.org/). With reductions in the costs of sequencing and assembly
genomes, additional domesticated species and their wild relatives will be sequenced, providing
important genetic resources. The pairing of genomes from domesticated animals and their wild
ancestors is very powerful for understanding the demographic history of domesticated animals,
providing new insight into the fine mapping of traits associated with domestication, as well as
shedding new light on themechanisms and consequences of artificial selection at the genomic level.

ORIGINS OF DOMESTICATED ANIMALS

Theoriginofdomestic animals is anoldbutpivotal question (6). As a landmark for the agricultural
revolution, zooarchaeological approaches have been included in studies of human evolution (33).
During the past twenty years, molecular genetic approaches have been applied to investigate this
issue (34, 35). Researchers can infer the likely progenitor of the domesticated species through
phylogenetic analyses of extant domesticated species and their wild relatives (36, 37). In-
corporation of geographic information of the samples allows further biogeographic or phylo-
geographic analyses (38), which can discern the center(s) of domestication. Samples from these
centers are expected to have higher haplotypic and nucleotide diversity and harbormore ancestral
variationor unique lineages (36, 37).Under the hypothesis of amolecular clock (39), the timescales
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for domestication events can be estimated based on known calibration points or themutation rates
of genetic markers (36, 37).

Comparedwith nuclearmarkers,mitochondrialDNA (mtDNA) has some properties (e.g., lack
of recombination, high mutation rate, multiple copies) that make it useful for tracing the origin of
domesticated animals (36, 40). Since 2000, a large number of studies have used sequences of
mtDNA fragments [i.e., control region (D-loop) and/or cytochrome b] to study various domes-
ticated animals (3), including species that have worldwide distribution, such as pigs (41, 42),
horses (23, 43), cattle (44), goats (45), sheep (46), dogs (47), donkeys (48), chickens (49), and cats
(50), as well as those with more limited distributions, such as zebu cattle (51), water buffalo (52),
yaks (53, 54), and alpacas and llamas (55). Results frommtDNA studies provide a perspective, at
least from the maternal side, as to the likely progenitors and candidate lineages involved in
domestication. The inferred domestication centers or events are listed in Table 1.

With progress in the efficiency of DNA sequencing, researchers began to adopt a population
phylogenomic approach using complete mitochondrial genomes rather than just fragments. Com-
pared with just the control region, the sequencing of many complete mtDNA sequences allowed

Table 1 Origin of eight common domesticated animals inferred by mitochondrial DNA

Clade

Domesticated species Wild ancestor

Location ReferencesName Latin Name Latin

Mammals Dog Canis lupus
familiaris

Gray wolf Canis lupus Southern East
Asia

47, 62, 69

Cat Felis silvestris catus African wildcat Felis silvestris
lybica

West Asia 50

Donkey Equus asinus African wild ass Equus africanus Northeast
Africa

48

Pig Sus scrofa
domesticus

Wild boar Sus scrofa East Asia 41, 57, 149

South Asia

Southeast Asia

West Asia

Europe

Cattle Bos taurus Aurochs Bos primigenius West Asia 44, 58–61

North Africa

Europe?

Horse Equus caballus Wild horse Equus ferus Eurasian
steppes

23, 43, 58, 64

Sheep Ovis aries Asian mouflon Ovis orientalis West Asia 46, 150–152

Goat Capra aegagrus
hircus

Bezoar Capra aegagrus West Asia 45, 153

Birds Chicken Gallus gallus
domesticus

Red junglefowl Gallus gallus Southern East
Asia

49, 67

South Asia
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clarification of mtDNA phylogeny/genealogy of domesticated species at the highest levels of
resolution, a strategy that has proved successful in molecular anthropological research (56). This
approach was first carried out for pigs in 2007 (57) and then became widely adopted for taurine
cattle (58–61), dogs (62), horses (63, 64), sheep (65), yaks (66), and chickens (67).With their high
resolution and increased sampling sizes, these studies yield more details about the origin of
domestication, including the time of origin, number of founders, and approximate geographical
region. These approaches have also revealed somepreviously unknown, cryptic local demographic
events or sporadic introgression from wild progenitors (57–61, 67).

An analog of mtDNA, the Y chromosome (strictly, only the male-specific portion of the Y
chromosome) can reflect the parental contribution to the gene pool of mammalian domesticates
(40, 68). Integrating information from the independently inherited mtDNA and Y chromosome
geneticmarkers can provide greater details about the origins of domesticated species. For instance,
earlywork based on 654-mtDNA control-region sequences suggested that dogs had a single origin
in the vast region of Asia east of the Urals (47). Subsequent analyses of 169 mitochondrial
genomes, together with 1,543 control region sequences, further refined the origin of dogs to
a location south of the Yangtze River in East Asia approximately 5,400–16,300 years ago (62). By
analyzing the sequence variation of the Y chromosome in 151 dogs, Ding et al. (69) corroborated
the conclusion that the area south of the Yangtze River was the principal, and possibly sole, region
of dog domestication, but they also revealed that subsequent dog-wolf hybridization events
contributedmodestly to the dog gene pool. Here, both the Y chromosome and the mtDNA analyses
presented strikingly similar pictures for dog domestication, with the place and time coinciding
approximately with the origin of rice agriculture, suggesting that dogs may have originated among
sedentary hunter-gatherers or early farmers as an important cultural trait (62, 69). Unlike the
pattern observed in dogs, inconsistent results derived from Y chromosome and mtDNA data may
indicate sex-biased breeding histories (40). In contrast to a high diversity observed with mtDNA
(23, 63, 64), near-complete monomorphism of the Y chromosome is found in extant domestic
horses (70, 71). These results suggest that modern horses trace back to an extremely limited
number of male lineages despite having multiple maternal origins, implying a strong sex-biased
domestication history (70). Unfortunately, compared with mtDNA, systematic investigations of
the Y chromosome in domesticated species are still limited (68), in part because the sequence of the
Y chromosome is often unknown, as most reference genome sequences for domesticated species
are from females (i.e., they lack a Y chromosome).

Both mtDNA and Y chromosome markers are useful for tracing the origin and subsequent
dispersal of domesticated animals, and this information is often valuable for other genetic studies.
Nevertheless, traditional Sanger sequencing makes massive analyses of mitochondrial genomes
and Y chromosomes at the population level cumbersome and expensive. Targeted resequencing
of specific portions of mtDNA and Y chromosomes using NGS (72–74) provided an oppor-
tunity to address this issue. The initial studies using this approach involved the resequencing of
mitochondrial genomes (64) andY chromosomes (75) in horses. Resequencing of approximately
186 kb of the horse Y chromosome identified three Y-chromosomal haplotypes (75) and resolved
an important piece of the genetic puzzle of horse breeds. Additional data from mtDNA and
Y-chromosome markers generated using NGS platforms are expected to enhance our genetic
documentation of the genealogy of various domesticated animals in the near future.

There are limits to the knowledge that can be gained from mtDNA and Y-chromosome
markers. The nonrecombining mtDNA and Y chromosome can be treated as two independent
genetic loci in the genome (36), but they reflect just a small part in whole-genomic history (76). In
addition, the effective population size for haploid mtDNA and Y chromosomes corresponds to
a quarter of the size of the diploid autosomes.mtDNAandY-chromosomemarkers are sensitive to
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genetic drift (77); moreover, natural selection acting on the two markers cannot be excluded
(76, 77). As a result of these limitations, it is not surprising that nuclear autosomal markers
revealed different scenarios for the origin of some domesticated species. For instance, work on the
BCDO2 (beta-carotene dioxygenase 2) gene indicated that yellow skin originated not from the red
junglefowl, as suggested by mtDNA (Table 1), but most likely from the gray junglefowl (Gallus
sonneratii) (78). With advances in genotyping and resequencing technologies, analyses of au-
tosomal genome-wide markers can be employed. For instance, whole-genome resequencing of
dogs revealed that the split between wolves and Chinese indigenous dogs occurred 32,000 years
ago (79), much earlier than estimated frommtDNA (47, 62). vonHoldt et al. (80) showed that dog
breeds share a higher proportion of multilocus haplotypes unique to gray wolves from theMiddle
East, suggesting that this location was the dominant source of the genome diversity seen in dogs.
Incorporation of data from mtDNA, the Y chromosome, and autosomes of extensive samples,
even ancient DNAs, should allow us to depict a more complete picture for the origin of do-
mesticated dogs. Domestication can mirror the movement of humans during the Neolithic era, as
domesticated animals were transported by or with humans. One paradigm is the commensal
models used to discern the peopling of the Pacific (81). Analyses of mtDNA variation in chickens
(82, 83), dogs (84), and pigs (85, 86) revealed that Southeast Asia was an important source for the
Pacific domesticates. This suggested a protracted period of genetic exchange between the exotic
breeds carried by theAustronesians [presumably fromTaiwan (87)] and the indigenous animals of
Southeast Asia, implying that the Austronesian immigrants probably sojourned in Southeast Asia
before spreading to the Pacific, whichwould support the slow-boatmodel for the populating of the
Pacific (88). Similarly, work with theMC1R (melanocortin receptor1) gene revealed selection for
the black color in China, which could be associated with the ancient Chinese sacrificial culture,
providing an interesting example of the molecular consequences of artificial selection in livestock
and its cultural impact (89).

GENOMIC FEATURES UNDER THE DOMESTICATION PROCESS

Genomic patterns often show that the evolution of domesticated animals proceeds through a two-
stage process (Figure 2a). Generally, two evolutionary stages can be partitioned in many do-
mesticated animals: (a) an ancient domestication event followed by (b) a more recent breeding
process. Ancient domestication events correspond to the domestication of the animal from its wild
ancestors to a domesticated species; many such events occurred approximately 12,000–14,000
years ago, during the agricultural revolution of the earlyNeolithic, alongwith the domestication of
major crops (3). Compared with the more ancient domestication events, modern breeding for-
mation has been largely restricted to the past 300 years. Breed formation started with selective
breeding of animals in response to diverse demands in the eighteenth century (90). For example, in
the domesticated pig, the selective goals were directed at higher growth rates and production of
leaner meat in response to changes in human caloric intake in modern societies (91). The selective
goals for dog domestication have been more diverse than for any other domesticated animals, as
they have been bred not only for desired physical characteristics, such as body size, skull shape,
coat color, texture, length, and thickness, and even tail shape and size (90, 92, 93), but also for
behavioral patterns, with breeds specialized for herding, guarding, agility, speed, and compan-
ionship (94, 95).

Domesticated animals underwent an ancient bottleneck when they were domesticated from
their wild relatives. Population genomic analyses showed that the strength of these ancient bot-
tlenecks was relatively mild (7, 24). For instance, the domesticated dog experienced a relatively
mild bottleneck during which the effective population size was reduced to 16% of the ancestral
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population size (96). As a result of these ancient bottlenecks, domesticated species had only short-
range linkage disequilibrium (LD) before the breed-formation processes started (see Figure 2b).
Haploblocks in the ancestral dog population were shorter than those in modern humans (∼10 kb
versus ∼20 kb in human). Domesticated pigs from China also have similar LD patterns (∼10 kb),
reflecting the weak effect of the ancient bottleneck from the early domestication stage (97). LD in
horses across breeds is intermediate in length between that seen in dogs and in humans (24).
Nuclear diversity in domesticated animals before the breeding process started was also mildly
reduced compared with their wild relatives owing to the mild ancient bottleneck (Figure 2c). For
instance, the reduction of diversity in the ancient dog population was approximately 80% of that
of graywolves (96), andmitochondrial evidence revealed that domesticated pigs show lower levels
of nucleotide diversity than do wild boars (57).

GENOMIC FEATURE UNDER THE BREED-FORMATION PROCESS

The recent and intensive inbreeding that occurred during breed formation has introduced a strong
bottleneck effect in modern breeds (for dogs, see Figure 2a). The short time span of selection has
resulted in breed-specific, long-range haplotypes, which have not yet been substantially broken
down by genetic recombination. Consequently, strong LD is expected in breeds that have been
exposed to modern breeding.

For example, LD extends for ∼2 Mb in modern dog breeds, which is approximately 10–50-
times longer than that observed in most human populations (98). Long haplotypes are very likely
the result of inbreeding rather than the target of selection. As shown in Figure 2d, long haplotypes
in dogs are composed of concatenations of several short ancestral haplotypes, which have early
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Figure 2

Demographic history and genomic feature under a two-stage domestication history. (a) Domesticated animals underwent an ancient
domestication bottleneck and more recent breed-creation bottlenecks (154). The strength of the ancient bottleneck was relatively
mild, leading to (b) short-range linkage disequilibrium (LD) (7) and (c) relatively lownuclear diversity (96). The breed-creation bottlenecks
were of high strength and resulted in (d) long-range breed-specific haplotypes (7) and (e) extremely low nuclear diversity (96).
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origins from the ancient population and are shared by many breeds (7). Domesticated dogs have
relatively long LD (∼2Mb) within breeds andmuch shorter LD (∼10 kb) across breeds (7) (Figure
2b), which is attributed to genetic isolation during the breeding process. A different situation is
found in horses, where LD across breeds is only slightly shorter than that observed within breeds
(100–150 kb). A possible explanation for this difference is that a large mare population was
required for breed generation owing to the small number of offspring produced per mare (24).
Amaral et al. (97) investigated three genomic regions in awide diversity of domesticated pigs (from
both Europe and China) and French wild boars and found that the LD extended (with r2 � 0.3)
over large genomic haploblocks of up to 400kb formost European domestic pigs,while being only
approximately 10 kb in most Chinese domesticated pigs. The extensive recent breeding history in
European pigs potentially explains this difference in LD size. The high intensity of inbreeding that
occurred in European domesticated pigs would have led to increased homozygosity (identity-by-
descent) and, as a consequence, an elevated level of LD.

In addition to the enrichment of long haplotypes across the whole genome, another feature of
recent breed formation is that these specialized breeds should suffer from severe founder effects. A
reduction of genetic diversity is expected from the historic bottlenecks that occurred during
modern breed formation. An example is shown in Figure 2c,e, where a significant reduction in
genetic diversity would be expected after intensive breeding. In the swine industry, for example,
many globally distributed breeds were created from a few European domesticated pigs in the past
300 years. In contrast, many local pig breeds have been well retained in China (99, 100). After
investigating 39 independent genomic markers in a wide range of pig populations, Megens et al.
(101) showed thatmost Europeanpig breeds exhibitmuch lower genetic diversity thando the local
Chinese pig breeds. This difference has two possible explanations: Reduced genetic diversity (a)
could have been an inherited trait owing to a scarcity of polymorphisms in the ancestral population
or (b) could be due to a severe founder effect as a result of the recent breeding process. A smaller
effective population size for the ancestral European wild boars has been suggested, owing to
a strong population bottleneck during the Last Glacial Maximum (30). However, the reduction is
still observed if Europeanpig breeds are combined together and comparedwith small subsets of the
Chinese pig breeds that suffered from domestication bottlenecks owing to their geographically
restricted regions (101). Therefore, the data suggest that the severe founder effects generated
during modern breeding explain the differences in observed genetic diversity between European
and Chinese domesticated pigs.

GENOME-WIDE ASSOCIATION AND WHOLE-GENOME RESEQUENCING
STUDIES TO EXPLORE COMPLEX TRAITS

Domesticated animals offer an opportunity to study the genetic mechanisms involved in complex
traits. The recent origin of domesticated animals results in them having a high background level of
genetic homogeneity. Through whole-genome sequencing projects, a large number of SNPs have
been discovered and can be used in genome-wide association studies (GWAS), and commercial
SNP chips are available for common domesticated animals (Table 2). Many SNPs have been
identified that associate with diverse traits, such as fattiness, androstenone levels, and brown coat
color in pigs (102–104); dwarfism in horses (105); abdominal fattiness and body weight in
chickens (106, 107); and several diseases in dogs (108–110).

Owing to the limited density of SNPs included in the chips, GWAS studies usually do not
specifically identify the responsible gene or causative mutation underlying the phenotypic variation
examined. An analysis that narrows down the target region is necessary to refine the association
map. For example, Sutter et al. identified a major quantitative trait locus in dogs on chromosome
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15within a single breed, the Portuguesewater dog, a breed that descended from twomajor founding
kennels that disagreed on an appropriate size standard, resulting in considerable size variation in
the founding population (111–113). The gene for insulin-like growth factor 1 (IGF1) was identified
as an important factor contributing to body-size variation when SNPs and small insertion/deletion
polymorphisms in the 15-Mb genomic interval surrounding the quantitative trait locus were
examined in small and giant breeds. Further analyses showed that therewas a significant signal for
intense artificial selection on the IGF1 locus across 22 breeds of small and giant dogs, suggesting
that a single IGF1 allele is a major determinant of small size in dogs (113).

GWAS provides a fast and standardized procedure to interrogate some complex traits, but
several prerequisites are required. First, a relatively large sample size is needed to generate suffi-
cient detection power and have a low false-discovery rate. Second, cosegregating SNPs that will be
genotyped on the chips should flank the causativemutation(s) underlying the phenotypic variation
examined. The second prerequisite, however, does not always hold true. A substantial amount of
phenotypic variation is breed specific; thus, the detection power of GWAS will differ greatly
among breeds. SNPs exhibit differing detection powers among populations in GWAS studies,
especially those from animals that hadmultiple domestication origins; therefore, customized chips
with increased SNPdensity should be developed. An alternative and enhanced approach toGWAS
is to sequence awhole genome froma population of individuals usingNGSplatforms. A particular
advantage of this method is that it allows the discovery of many breed-specific mutations.

With whole-genome resequencing data, selective sweeps can be detected to identify candidate
genetic sequences that underlie complex traits. One signature of a selective sweep is a regional
reduction in the nucleotide diversity at the loci under selection. Genome-wide screening of com-
mercial pig breeds showed a cluster of genomic regions that have low nucleotide diversity (114). A
frequently used measure of nucleotide diversity is the Watterson’s estimator (uw) (115). In the
Large White, Landrace, and Pietrain breeds of pigs, the KIT locus, which controls white coat color
pigmentation, shows lower nucleotide diversity (uw ranging from 0.00021 to 0.00034) compared

Table 2 Available commercial single-nucleotide polymorphism (SNP) chips for
genome-wide association studies in domesticated animals

Species SNPs Chip

Cattle 54,609 Illumina BovineSNP50 BeadChip

777,962 Illumina BovineHD BeadChip

6,909 Illumina BovineLD BeadChip

648,855 Axiom Genome-Wide BOS1 Bovine Array

Dog 22,362 Illumina CanineSNP20 BeadChip

172,115 Illumina CanineHD BeadChip

Sheep 54,241 Illumina OvineSNP50 BeadChip

Chicken 60,000 Illumina ChickenSNP60 BeadChip

580,961 Axiom Genome-Wide Chicken Genotyping Array

Pig 64,232 Illumina PorcineSNP60 BeadChip

Horse 54,602 Illumina EquineSNP50 BeadChip

Water buffalo 90,000 Axiom Buffalo Genotyping Array
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with in wild boars (0.00078) or red Duroc (0.00067) (114). Because it is well documented that the
KIT polymorphism is associatedwith the dominantwhite color in domestic pigs (116, 117), Sutter
et al. (113) concluded that artificial selection drove the homogeneity at this loci in the LargeWhite,
Landrace, and Pietrain breeds.

An alternative measurement of nucleotide diversity is pooled heterozygosity (zHp) (118). zHp

can be used in cross-group comparison with whole-genome resequencing data to identify areas
showing extremely high levels of homozygosity, genomic sequences that could be genetically
responsible for phenotypic characteristics of a chosen group. To investigate loci under selection
during chicken domestication, Rubin et al. (118) resequenced pools of genomic DNA covering
eight different populations of domestic chickens and red junglefowl on the SOLiD platform. By
screening selective sweeps in the pooled sequence data, the authors identified some regions with
high levels of fixation, thus potentially under selection, in the domesticated chickens. Combining
other types of bioinformatic analyses, as well as genetic evidence, the authors proposed that the
TSHR locuswas likely related to photoperiod control of reproduction,where an absence of strict
regulation of seasonal reproduction is seen in the domesticated chicken compared with the red
junglefowl (118). Recently, Rubin et al. (119) reported that European domesticated pigs (Large
White, Landrace, Duroc, Hampshire; 63 individuals in total) contain three genomic regions
with excess homozygosity (zHp<�5.29) associated with selection for an elongated back length
and increased number of vertebrae (Figure 3a). Three protein-coding genes, includingNR6A1,

Wild boar

Domestic pig

Gray wolf

Domestic dog

a

–
zH

p
Z

(F
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Figure 3

Whole-genome scans for positive selection. (a) A selective sweep analysis between the wild boar and the domesticate pig (119).
Y-axis values are �zHp, genome-wide Z score of heterozygosity plot, and the x-axis shows the position of the windows along each
chromosome. (b) A selective sweep analysis between the gray wolf and the domestic dog (121). The positive end of the Z(Fst) distribution
is plotted along the dog autosomes.
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PLAG1, and LCORL, were mapped to these regions and are likely important factors for these
valuable traits.

Recent selection in a population can also lead to high levels of genetic differentiation between
populations. Fst (F statistic) is frequently used to measure the genetic differentiation between
populations (120). With whole-genome resequencing data, a Z transformation of Fst can be
performed to identify genome-wide outliers that show extremely high levels of differentiation. Erik
Axelsson et al. (121) recently identified 36 unique autosomal candidate domestication regions
containing 122 genes with low zHp and high Z(Fst) scores in dogs (Figure 3b). These genes were
enriched in the pathways involved in starch and fat metabolism. The expression level of two of
these candidate genes,MGAM andAMY2B (as well as the amylase activity of the encoded product
of the latter), were shown to be significantly higher in the dog compared with the wolf. These
results suggest that changes in these genes are adaptations to eating food with starch during the
early stage of domestication.

The selective sweep studies described above are largely based on the DNA-pooling sequencing
method, which assumes that all samples contribute equally in the pooling DNA. If the samples are
unequal, estimation of allele frequency is affected, though equal genomic DNA contribution is
hard to guarantee. An alternative method is to sequence samples from isolated libraries; however,
this leads to more complicated models to estimate allele frequency owing to the variation in se-
quencing depths and coverage. To resolve this question, we recently developed a method to detect
selective sweeps from individually sequenced samples from populations. In the new method, we
model the process to sample chromosomes and infer the allele frequency distribution at each SNP.
Varying sequencing depths are allowed among individual SNPs. The population differentiation
is calculated between the two distributions, rather than between two fixed allele frequencies
(H.B. Xie & Y.P. Zhang, manuscript in preparation).

COST OF DOMESTICATION

A common observation of domesticated animals is that they tend to have low reproductive fitness
and increased susceptibility to various diseases (122, 123). These disadvantageous legacies are
known as “the genetic cost of domestication” (124), and they represent the accumulation of
deleterious mutations in the genomes of domesticated species (124). Compared with their free-
livingwild relatives, domesticated animals donot require a highmetabolic efficiency owing to their
limited activity as well as their more stable living conditions. As mitochondria are the power
factory of the cell, they play key roles in oxidative energy metabolism (125). The relaxation of
selective constraint since domestication is hypothesized to be reflected in the coding regions of
the mitochondrial genome that encodes energy metabolism genes (126). An excess of (slightly)
deleterious mutations, that is, nonsynonymous mutations and mutations in RNA-encoding genes,
has been characterized in the mitochondrial genomes of domesticated animals, such as the dog
(126–128), pig (127), yak (129), and chicken (127). The low-coverage genomic-sequence data
also revealed that a higher frequency of nonsynonymous mutations occurred in dogs compared
with wolves (130). In addition to the relaxation of selective constraint (96), the Hill-Robertson
interference driven by artificial selection also likely contributes to the observed patterns described
above (6). Because domestication events are recent, and the deleterious mutations are newly gen-
erated, the accumulation of slightly deleterious mutations in domesticated animals can be explained
as a consequence of not having enough time to eliminate them from the population (131–133). In
otherwords, excess numbers of slightly deleteriousmutations are prone to foundon youngbranches
(i.e., domesticated) in a phylogeny (128, 133, 134). To evaluate the cost of domestication, additional
genetic data, improved methods for analyses, and functional experiments will be required.
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CONVERGENT EVOLUTION

As some of the first to be domesticated, dogs are special animals. Gray wolves, wild relatives of
dogs, might have been domesticated first as scavengers that lived and hunted commensally with
humans. With successive adaptive changes, humans adopted them during the agricultural revo-
lution (32). Like humans, dogs have adapted to starch-rich diets and turned from being
carnivorous to omnivorous. Two independent research teams performing whole-genome rese-
quencing of dogs and wolves have identified several genes with key roles in digestion and me-
tabolism, showing that the large changes in food sources for dogs played a crucial role in the early
stages of dog domestication (96, 121). Both studies suggested that the convergent evolution to
similar diets caused similar driving forces for positive selection in the genomes of both humans and
dogs, resulting in convergent evolution in genes involved in metabolizing this new diet.

As pets, domesticated dogs today are more companions than working animals; thus, they show
the greatest level of interspecies bonding with humans (135). Previous research revealed that puppies
show skills for tasks for which they must communicate with humans, whereas wolves raised by
humans donot.Dogs are evenmore skillful than great apes (136). They also showability to learn by
mimicking human behaviors. These observations suggest that there has been behavior convergence
between humans and dogs. To identify genes that may have been positively selected in this con-
vergence,Wang et al. (96) compared lists of positively selected genes identified in dogs and humans
(137) and found that the overlap between these two lists was higher than expected, which revealed
that the level of convergence is statistically significant. Interestingly, convergent evolution is apparent
not only in genes for digestion and metabolism (121) but also in genes involved in neurological
processes (110). Some genes show convergent evolution as being responsible for a wide range of
neurological pathogenic conditions, such as aggressive behavior (138), obsessive-compulsive dis-
order (139), depression, and autism (140). Changes in these neurological genes likelywere driven by
humans and dogs adapting to their new, similar environments,which had crowded living conditions
and required complex intimate interactions both within and between species (141, 142). These
results shed new light on the field of convergent evolution and offer opportunities to gain insights
into diseases shared by dogs and humans, such as cancer, diabetes, and epilepsy.

PROSPECTIVE

The genomes of domesticated animals are becoming powerful resources for understanding issues
in domestication. With the development of sequencing technologies and assembly tools, addi-
tional genomes from various domesticated animals will become available, as will the genomes
of their closely related wild relatives and even extinct wild ancestors (143–145). These new
genomeswill be complemented by genome resequencing at the population level, which should be
performed for various indigenous breeds, especially those threatened with replacement by
common commercial breeds (146). This will be necessary for the evaluation and conservation of
genetic resources. In addition, other genetic approaches, such as transcriptomic (147) and meth-
ylomic (148) analyses based on NGS, are required to explore the expression and epigenetic
patterns found in wild and domesticated animals to aid in identification of changes associated
with domestication. These efforts will not only advance our understanding of the genetic basis
of animal domestication but also facilitate improvements through breeding.
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