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INTRODUCTION Up to now there is no exact description of ground
and stable states of classical spins lattice system with dipolar long range in-
teraction. Its necessity is connected with several aspects. On the one hand,
lattice dipole systems draw theoreticians’ attention not only by the possi-
bility of application of new physical ideas but nontrivial results got on that
models. And the reality of dipolic interactions would always be attractive
[1-8, 11, 20-22, 30-32]. On the other hand, one can observe dipolic forces in
many physical phenomena beginning with ferromagnetic disintegration into
domains up to proteins and lyotropic liquid crystal systems self-organization
[8, 10, 11, 21, 25-27].

The development of mathematical methods [12-16] and obtaining of new
analytical and numeric results on the ground state lattice systems with
dipole interaction [18,19] allowed to determine precise structure of ground
and metastable states. Further we analyze ground state problems limiting
ourselves to classical spins dipole interactions. We pay special attention to
strict formulations of all restrictions and conditions as in the problem under
study we can’t always find nonobvious considerations that can affect the re-
sults.

DipOliC is ¢ new term that means abstract substance built of spheres with
finite size and in the middle of these spheres there are point ( with linear size
much less than the sphere radius) dipole moments. From physical point of
view dipolic is condensed state of Stockmayer liquids [30, 31]. All physical
properties of dipolic i.e. ground state, metastable states, inner motions and
phase transitions are conditioned only by dipole-dipole interaction. The im-
portance of the dipolic model is based upon its stability, numerous phases
and the possibility of complete theoretical analyses. Besides dipalic serves



as an excellent model of many real phenomena. The bright example of it is
in polystyrene spheres ordering on water surface, micro structuring of fer-
romagnetic particles covered by polymers in liquid, amphiphilic molecules
polar heads orientation in micelles, on water-oil interfaces and other much
more complex phenomena in heterodispersed phases, determined by dipole
interaction forces.

We consider the following aspects. In Section 1 we analyze the problem of
existing of ground state in lattices with arbitrary dimensionality. Subsection
2.1 contains the analyses of two dimensional systems with three dimensional
interaction. Worked out methods of analyses are applied in Subsections 2.3-
2.5 for study of rhombus systems. In Subsection 3.1 degeneracy space is
defined and a dipole system order of parameter on a simple cubic lattice is
built. In Subsection 3.2 we proceed topological study of cubic dipolic stable
inhomogeneous configurations without discontinuities in the order of param-
eter fieid.

1 Stable configurations of dipole systems

For analyses of stable configurations of dipolic with arbitrary dimension we
consider the system of N classical point dipoles P localized in the points r{f
of R® space. Let r§ = rf —rf,if { # j. Subscripts i,5.kim=12..,N
denote a dipole, and superscripte o, 3.5 = 1.2, ..., n are used to denote the
components of n-dimensional orientation vectors P., and the coordinates .7
. We set the energy of dipole - dipole interaction as '

1 a
H=3 L ALPF (1)
13
were the dipole tensor of R"
AT = gragepral ™) = ol (Eu = nriraflr) (2

and distance R" is commonly set as

Il = J}:TT 3
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Consider that 4;; =0, if i = j. We call configuration to be a set of vectors
R={P.PB,.., Py} 4

Sometimes we will call the the configuration (4) as orientational or dipole
structure in contrast to the spatial dipolic structure defined by a set of co-
ordinates

G = {'Flv FQ! weey ?3} (5)

and Hamiltonian (1). Let’s call such configuration to be R, where there is
minimal energy of dipole interaction. It’s naturally to count R® configuration
- that corresponds to the global minimum of dipole energy (1) - as the ground
state. Locating of § - structure is significant, otherwise the approaching of
point dipoles may be destroyed as a result of their convergence.

The main problem is clear: to find the ground state R° of a dipole sys-
tem with Hamiltonian (1). Using Tikhonov theorem about direct product
compactness and Weierstrasse theorem about the possibility to reach the
minimum we assume that every finite system with dipole interaction has its
own ground state. the method of finding of stable dipolic configuration is
easily seen from (1). The energy H is a quadratic form by P> variables.
Thus, the solution of the extreme task is to find eigenvalues and eigenvalue
Ao will correspond to R° ground state configuration.

[t is not =0 easy to solve the problem of the ground state in infinite (¥ —
o) systems. The main problem is connected with the arbitrary convergence
of n-dimensional lattice sums [4. 5].

$*% = _Z( fa8 _, "?I'rfL) (6)
' a7 N L7 i

that take the place, for instance. in calculating the field on 1 site

he=-3 23: A’ PP (N
2

if }-’: equals a constant vector B (Ferromagnetic configuration). Notice, that
local fields (7) are naturally introduced as k; = —(0H/OP.) to present energy
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(1) in the form
H=-3T TP (8)

[t is postulated in [17], that the dipole interaction potential (2) is not fully
integrated, but its sphere mean equals zero. The latter case is connected with
the local nonintegrability of every term in (6) in the vicinity of every ¢ site,
though the sphere mean zercing leads to some harmonicity. There we see
certain dualism: if the series absolutely converges (6), then the problem of
an absolute series convergence (1) arises. Therefore, the ground state depends
on the method of summation and, hence, on the form of the sample.

2 Analyses of two-dimensional systems with
three—dimensional fields

We assume the following consideration: the ground state of any system with
classical spins - arranged in a plane and interacting according the law (1) -
has the configuration with spin orientation being set in the same plane.

2.1 Stability conditions for two-dimensional systems

To describe plane (two-dimensional) dipole configuration we introduce a com-
plex variables:

PP=( =0 yy=n—z=1 [GCo+ CoG) =2(.2- 5). (9)

Substituting (9) in (1) and {7) we find the energy

g=_1 z(u(, + E;Cj 43597+ :‘?:;z) (10)
847\ sl |25}
and the local field in the arbitrary point £ € C
R A et o
he = = + 34 ) (11)
¢ '--’z,-:(l-zs-fl3 iz — &P ) '



where on a complex plane C in z; € C there exist point dipole sources ¢; .
We introduce the torus

T = {¢ = (G Cn) 2 16l =1} (12)

From (12) it follows that T. = 1/¢. Then for the energy of a plane dipole we
obtain the following Loran series

& L1 -2 __J_'%'
1 E'.'+(. SrSJ’*a‘j"’(n
H:--V(’ £43 4 (13)
B\l Tl

The calculation of the algebraic equations
{0H{8} =0 under Gl=1, i=12,.,N (14)

correspond to an arbitrary energy extrtemum {13) in C¥. Equations { 14)
are also the necessary conditions of the minimum of dipole energy H in local
coordinates exp(it;), where ¥; is the angle characterizing two-dimensional
vector (; on the torus (12) and it takes the form of a system

{0H/3%:} =0 (15)

Using (&) and (9) and expressing the dipole and the local field (11) on a site
1 in the form

& =exp(idi); hi = |h,} exp{im) (16)
We obtain clearly pronounced expression for {15)

AH /33, = |h|sin(n + 9:)/2=10 (17)

Substituting the solution of the system (17) in (B) written in variables (16)
1 . 1 ‘ ,
H= —Z z(h,zj + H;Q,‘) = '—:2- Z [hg‘cos(m + t‘}.‘) [18)

we see that the ground and stable states appear at 73 + J; = 0, i.e.when the
dipole matches local field at a site. Notice, that the ground state corresponds
to the highest possible values of |h;].



Let us consider plane lattice with a cell in the form of a parellelogram.
In each lattice site we put a dipole. The lattice site defined by elementary
parallelogram with sides { and r having corner ¢. We consider here and in
n.2.2 the local field (11} without coefficient 1/2, therefore the problem on
stability statescan be formulated as following: for the function

= _ ana )3
h(ws) = T{ Ca 4 3lalwa—ws) ). (19)

Py fuwe — wsf® lwa — wgl®
we must find all {¢,} (with a) which satisfies the condition
V3 : h{wg) = Agls, A3 € R, sgn)y = const # 0. (20)

where w, denoted the variable point on lattice, w3 is the fixed point on lat-
tice. and |Cu| for all o = {m,r} (here (n.1.) defined the side of point at
lattice).

Note that the energy of plane dipole system can be define by following
formula 1 .
H=—=lim[p™" Re Y {shp(rg)l. | (21)
4 p—oc fex, .
where K, denoted the parallelogram with sides parallel to the elementary
vector of lattice that contains p lattice points. hy{w = 3) is the field induced
on the site w3 by dipoles found inside X,. Taking into account the uniformly
convergences of the series (19) on w3z, one can obtain that

1, - - . ,
H=-3limfp™ R‘ﬂ;p’sgh(wﬂ)}- (22)

Formula (22) has a simple form particularly if a two-dimensional consequence
{As} = {Aarx} has finite limit when M and N independently tend to infinity.
Since A(ws)Cg = As see (20) we obtain by the regularity of Chezaro method
following

Proposition 1. Letlimaxo Aun = A, then

1
H= —';r\ (23)
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2.2 Homogeneous periodic configurations

In this point it will be assumed that Ayx = A = const (homogeneous
condition). Stabile configurations is being searched in the class of double
periodic functiona {, = (e = 2(m.n) + iy(m, n}. Solet

2(mq, 1) — 2(ma, n3) = y(my, m) — y(ma,m) =0 (24)

if only m; — ma = ny — nz = 0 (mod s), s is fixed natural number. Thus,
the condition (20) transforms into the system of lineal equationa in the form

romolape@(p.0) + baqi(py @) = A2{ M. N),
2;\-91:0(67411(51 (I) + d’qy(p, q)) - Xy(‘,‘f" A\'r)!

where MM N =0.5s— 1. f(p.q) = fls, M.p, N.q) = f({if;ﬂ}v{l—‘-;-"-*}s), and
{e} denotes a fractional part of the number (o),

(25)

{

4Pm? 4+ 8lrmncos & + r*n?(1 + 3cos 26)
m= L (B + 21 g a4
m=pasgmods) “m* + 2Urmn cos ¢ + r°n”

: 8{rncosd + lm)rnsiné .
= , 27
bee m.-.,..:z-;( mods { Rm? + 2lrmncos ¢ + r2n3)Bl’ (27)
do = V" —2Pm? — 4lymncos ¢ + r’n?(1 — 3cos 29) (28)

P mpcgmods) (Pm? + 2lrmn cos @ + r2n?)%/? ' -

with normed conditions

(M, N)+ (M, N) =1, where M, N = 0,s—-1. (29)

If digress from the concrete form of the coefficients (26)-(28), lets note that
the inatrix of system (25) fali into four cells

o= (3 5)

where A. B, D are the block matrix of a specific form, that we call block
circulants. These block circulants has the form

-’1-0 A}. . Aa—l
041'-1 A-O eor -‘l =2 (31)

A A .. A
7



- where 4. 4. ..., A, arecirculants composed out of elements ayy, ..., ag 1 ...:
@,_1,0s --ey B4—1,5—1 IeBpectively. We call to mind that the circulant of the ele-
ments ag, a3, .... @;,—; € C 18 a square matrix

% @ a2 .. G
Q-1 Gy a1 ... Q.2 . {32)
ay Az 4z ... &g
We formulate two statements about block circulants eigenvalues proved
by I.V.Ermilov.
Proposition 2. For the block circulantA
. =1 .
det.d = 3L, Y Lelay, (33)
p.q=0

Eigenvalues arnd corresponding eigenvectors for A arc evaluated by the for-
mulas

3=1 ' .
P , -'
Moo= Y i, (34)
Pg=? ‘
- 2 _3~1 -1 _ - -l X
Zip = (L 60, e e 6 R e 66 e, e €8 g7, (35)

where e”’ i5 (as + 3) vector component, jk =0,s -1, and €x are roots of
s pouer ]rcm unit.

Using commutational property for the product of one sige block circulants

and Shur's formula [17] det ( s g) = det(AD~ ACA-'B), where A. B, C,
and D are block circulants we obtain formulas for sigenvalues o{ the matrix
G= ( g g) :

Np =LA+ Aﬁ +/(04 - Aﬁ)’ +4X§A8),
M= 1A /u BP+405258),

4

(36)

where k.j = 0.5 — 1. We remind that if B = C and a,,. by, dpq are calcu-
lated with formulas (26)-(28), then G is the matrix of a system (25), that we
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call plane dipole system stable states matrix.

Theorem 1. (about eigenvalues of plane dipole system stable states
matrix) Eigenvalues of stable states matriz ave determined by formulas (36),
with B = C, and

4 _ ' 4PFmir8lrmncu $p(143cos28)  2x{jmtkn)
Aﬂ‘ =7 (Pl 42lrmr cosd+rin cos ’

L]
B ' ‘s 1 cob @4im jrnsin 2a{jmthn) ‘o
"\.5"‘ =L (P +20rmn cos ‘rivs;.‘r";E cos 4 : (37)

AL = - —2Pm3 —dlrmin cos ptrin?(1—3cos 20) o8 2x{ jm+knd
jk T (Tmi4drmncosd4rond b7 - s :

Lets point cut the construction rles of eigenvectors of plane dipole sys-
tem stable states matrix by its eigenvalues. If the eigenvalue A of G matrix
correspond to eigenvector ., then we write A — .@. Under (.d@. §) we mean

the vector obtained by adding to vector .3 she coordinates of vector &.

Theorem 2. (about eigenvectors of plane periedic system stable states
matrix). Eigenvectors of matriz (30) with elements (96)-(28) that correspond
to eigenvalues (36a), (36b) are evaluated according to the following four rules:

a) if ,‘\f; # 0. then
Ng — (3 Zjie (Na — MIZx). Mg — (A2 Z5, (N — MaZa)  (38)
b) if A8 =0 and Aji > AL . then

A"jk - (Zﬁn 6)) "\:k - (6; Zj&); (39)
) if A =00and M} < AL, . then

Nip — @0,Z%), Mp— (Z;x, 0); (40)

djif ,\fk =0 and Afg = }\ﬁ , then to eigenvaluz '\;‘k = X;k with multiplicity
of two correspond two independent eigenvectors

(3, Z3),  (Z. 0 (41)

where 3.k = 0,3 — 1; coordinates of vector Z_;;. are determined by (35); 0 is
a sero vector that as Z,, both have component s?.
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2.3 Illustration of homogeneous periodic stable states
in square lattice

In this paragraph we’ll show the usage of theorems 1 and 2 for the con-
struction of stable states. This theorems allow us to find only homogeneous
Ay~ = ) € R\{0}) periodic distributions of dipoles in the lattice but only
in such cases when among solutions of system (30) one manages to separate
vectors which coordinates satisfv nonlinear system of equations (29).

Lets consider a square lattice. Assuming in (37) [ =7 =1, ¢ = 7/2, we
obtain:

(o) = T 3 cos Saf ), |
8(3)_2‘mw§m (42)
AB(s) = T = i os.ﬂz_":;_l‘

Notice that among double series A ,,(s) (5, k =0,5 =1, s is fixed) the series
/\O‘o(s) converges slower of all others Thus, if a chosen summing border for a
series provides an error ¢. then just the same border for all other series A 4(s)
would provide an error which is deliberately smaller than ¢. Noticeably tha.t
sum A#,(s) one can express by single series sums

oG ( l)n-l .
’\00(") 42 ns{z Z ("n - 1)3/2 (43)

n=1

The last equality in this chain represents a special case of a well known
Hardy’s result [4]. Equality (43) allows us to define the required border of
summing "experimentally”. We chose such ¥ that

N 2 a2 ~x =1
4m* — 2n L (-1)
Y (m? + n2 )P - Z\ ns/z X (n- ns/»' < ¢

ma=—N nxl

Single series sums Y57, =i and Lo, (-E%—)m- are easily calculated approx-
imately with ver) high degree of accuracy. The error in approximate calce-

lation of sums AL and ), ie determined also by series A2 and Mg, . For all
this one should bea.r in mmd that AL, = )& . A =0 mth any s. The con-
struction corresponding to them eigenvectors was held on a computer using
(37). Table 1 shows the result with corresponding eigenvalues distribution
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(36a) and (36b) of matrix (30).

Avalue  multiplicity s =4 states energy
10.198 Agz = Aag ground state  —2.55
9.617 Ay =Xy = ’\;P = Ay 1 ezited —2.40
8.996 Ago = Ago ferromagnetic —2.25
3605 Ay =Ap= ,\'P = Ay 3 ezited —-0.9
3.437 A=Ay = A=y, 4 exited -0.86 . (44)
—2.646 Ay = A%z 5 exited 0.66

—4.267 A;, = ,\;3 =)A= A;, 6 exited 1.07
—6.454 g = Agy = Ao = Ags 7 exited 1.61
~7.088 A\, = Ag, = ,\;, = Ay 8 ezited 1.77

—12.068 Aoz = Mg maz 3.02

Strict formulation of the ground state problem for the case of square

lattice in the form of the following hypothesis. We call a ground state the
distribution possessing minimal specific energy.
Strict formulation of the problem about ground state for a square lattice in
the form of a following hypothesis. We call the distribution possessing mini-
mal specific energy of interaction the ground state According to proposition
1 and theorem 2 the task of finding of the ground state in a class of periodic
homogeneous distributions is formulated as follows. We need to find

1 . . ‘
y ‘selggl(og%_l(’\(% A(s))), (45)
where A’ and \" are calculated by (36)-(37).
In this paragraph we give an equivalent formulation of this problem which -
to our mind - is more preferable. It is evident that A« < M. Then in (45)
under the sign max one may write only \.. Now we make in (37) substitution
of variables

u=jls,u =k/fs.
As s=1,23...and j.k = 0,5 — 1, new variables u, v pass through the set
of all rational numbers from interval [0,1). Such an assumption can’t lead
to distortion of the solution of (45) by consideration of continuity.
Examine the function

Y(u, )= i [im + e"‘l"s exp(2xi(mu + nv)),. (46)

maAas—"C

11



and differential operator
1.3 e O .
= =fl— + ¢"*rn— 7
§= 2“8u +e rnav). (47)

Analytical calculations show that problem (45) in this notations has the
following form

4= L (15PY — 3|652¥]) — mi ~
H(u.v) = 75(I6P¥ - 3/¥]) — min, (48)

where 0 < u,v < 1. Formulas (36)-(37) allow us to put rather a lot point on
surface E(u,v). We believe that function (48) takes minimal value in points
(0,1/2) and (1/2,0). Thus, it 2 2 proves that microvortex distribution is the
ground state in a class of homogeneous periodic distributions of dipoles on
the infinite square lattice.

2.4 About stable vortex and ferromagnetic states of
two-dimensional rhombus lattices

In this section we investigate one parameter class of thombic lattices (r/l=1)
set by rhombicity angle o. Numerical experiment for finite dipole system
(o = 60°) shows that the ground state is not a periodic one [...]. Therefore
in this section we give up a priori assumption about periodicity of ground
and stable states. We chose the starting point of coordinates at the centre
of an elementary rhombus, and the axe « stretch along the greater diagonal.
Then the lattice with 2 = (m,n), v = (p,¢) may be written as

2= (m = §)exp(=i8) + (n — §)expli%) = |2, explid,).
2, = (m = p)exp(—1%) + (n — g) exp(i%), (49)
du= arctg( ;ﬁ?ts%), & = &TC‘S(;E_’?‘?S%):
We assume that the lattice (49) in a discus D, with radius p. Lets write (13)
in the form
B= Y (Uu+Tu.) (50)

nv€D,

where summation over all 1 and v (i # v), i.e. over aset Dy = D, x D,\A
. where A is a diagonal. From (13) and (16) we have

- | DT }
Vi = '8'([3'("' e + 3‘-“"“")":;«]/ EM (51)
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Consider the case a = x/3 (hexagonal or triangle lattice). We compare
two configurations: ferromagnetic configuration (F) ¢, = 0 and macrovortex
configuration (R) ¢, = &, + 7/2. Substituting (51) in (50) and Reducing
simultaneously quadratic forms of the numerator and denominator to the
main axes using the substitute

=(m-—p+n—gq)f2, k={(-m+p+n-4q)/2 (52)

the series is reduced to the form (at p — oc )

X r 2
limpy <o %-— . =2¥ 5 Thea @ P!Fﬁ
H®
5

} o ah? 4kt (53)
limy. 5 =U% = =25, Zia T’;ﬂi“—;,:‘?ﬁ':—“*

where , , : A
a = —1[cos(¢, — ¢,) — 3cos(d, + 4..)],
b= —2[cos(d, — &) + 3cos(d, + &),
c = —3/3ain(¢, + &) |

While sumnning over the lattice of dipoles in the finite disk D), one should
keep in mind that meaning of initial sums is preserved, if u.» € D,. The
expressions (53) absolutely converge and one can hope to calcula.t,e them
analytically. But even in (53b) there appear effects of gigantic oscillations.
That leads to the necessity of introducing periodic border conditions as well
as using numeric calculations.

2.5 Some considerations about local fields structure,
connected with limit transition

We try to construct the general picture of possible configurations of ground
and stable states of two-dimensional dipole lattices with Hamiltonian (13).
To do this we fulfil quality analyses of configuration geometry and use the
results of numeric calculations.

This happened due to traditional search of the ground state configuration
in the class of periodic solutions, which stability were guaranteed by spec-
ification of periodic border conditions. When the latter were lifted (ruled
out) (free border), the macrovortex configuration appeared to be the ground

13



state, and the ferromagnetic configurations were unstable relatively to long-
wave fluctuations and had approximate continuous degeneracy.

In this case of finite disks it "seems” to dipoles that the centre as well as the
border are limiting ones for the lattice. It antomatically produces the vortex.
Namely, if a homological border is limiting for the lattice, then dipoles try to
arrange parallel with the border. For a finite disk a homological border is a
circle. A removed point is also the homological border, and if it is a limiting
one for the lattice, then arrows form a vortex around it and are parallel to
it.

On the other hand. plane system of dipoles with finite mumber can’t have
continuous degeneracy in the ground state. As the degeneracy space of ferro-
magnetic configuration is a circle - and the degeneracy space of macrovortex
consists of two points - then ferromagnetic dipole structure of the ground
state for finite disks is impossible. This corresponds with numeric results
of the experiment in [19] about unstable ferromagnetic state of a hexagonal
lattice in a disk and its disintegration into even number of vortices. Prob-
ably the positive difference A = UF — U# is connected with lifting of the
degeneracy. ' _

In a complex task connected with the determining of the ground state (de-
termining of the global energy minimum) in a three-dimensional system of
the field, created by classic dipoles on the infinite two—dimensional lattice,
the dependence of the ground state on the nature of the limiting transition
may appear. One should consider independence of the limiting transition
when N — 0o and V — oo, and when the density (IV = ¥/V) remains con-
stant. we obtain below the classification parameter which sets up the way of
compactification in the dipole two-dimensional lattice in the space E* . It's
introduction allow us to define that the type of the ground state determines
border conditions in the point 0o, i.e. global topological properties of a sys-
tem.

Let us consider several simplest compactifications E? embedded into E? and
E* . These are spheric S? , toric T? and projective RP? compactifications.
The basis of each compactification is a disk with radius p, where a lattice with
classical point dipoles of unit length. One can easily imagine this parameter
while comparing two dipole configurations {R) and (F) on the trigonal lattice
(53). It is convenient due to a widely used method of triangulation of com-
pacts. Asymptotic behavior of (53) is the main problem which extrapolation
is nontrivial due to bad convergence of 'Y and UR to each other. More-

14



over, computers can’t calculate the energy of systems with great amount of
particles interacting all with all according to the law (13). That’s making
analytical calculations from section 2 one should pay more attention to the
conversion into (53).

Notice, that first we made the summation with four-dimensional lattice
p,v € D, x D\A. Then we made nonobvious transition by substitution
u=m—p v =n—gq. In this case (53a) and (53b) produced the figure
which does not depend on N. we managed to obtain the independence of N
and go from total energy to the energy per particle, i.e. to the density of en-
ergy, in the following way. For ferromagnetic configuration (F) the equality
limy—.. H¥(N)/N = £, T, H is the consequence of Cezare method regu-
larity, if this configuration is on one site {4 = const, m =0, n = 0). In the
common case the transition

T Y dm-np—g =2 Y Qulur)
q “« v

m »n p

. is connected with nonobvious assumption Q = ¥ with N — oo, where Q is
the number of solutions of Diophantine system of equations u=m—n, v =
p— ¢, lying in the area D,. Problems of finding Q in the area include special
case of Gauss (m + n < R?) and Dirichle (m - n < R?) problems. The pa-
rameter of compactification is hidden in this very transition. And this vague
situation make us assert the possible dependence of the ground state on the
way of compactification. Therefore, the main parameter is the global lattice
structure or conditions in infinitely remote point.

One may think that the configuration R will be ground. if the field in sites
2 — (s Wwill extrapolate to the smooth field ¢ in some compactification.
This assumption allows us to make conclusions of the global minimum exis-

tence on the formula
ind,® =\, (54)

where x is Euler characteristic, being the compactification invanant:
(8 =2 x(T})=0 x(RP))=0

We can take the following basis for the proof of microvortex existence by the
method of complex variable function {23].
Theorem Any glliptical n-order function f(z) with eros ay,az,...,aq and
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poles B1, 3, ..., Ba in the parallelogram of periods (every period is counted
according to its multiplicity) can be erpressed by Weierstrasse o function :

o(z —aj)ol{z —az) - -alz.— a,)
o(z=Ro(z = 3) - alz—-4,)’

flay=C
where C is constant and

Fi=(S+B+...+5)—(a1+ 03 +... +an) = ay(mod 7,7).

This theorem together with "good” structure of the point oo can allow
field he approximation (11) by some meromorphic field (€ is absent), if in
a specified lattice of dipole sources 51, 5. .... 5» a dual lattice of field zeros
@, Qg, ..., & Will be formed with n — oc. So this assumption concludes the
analyses of infinite two-dimensional lattices.

From (2.5) it follows that in the ground state the finite system of dipoles -
disposed at vertices of a regular N-gon - forms the vortex with spin orien-
tations directed along the tangent of the described circle. The demand for
polygon regularity is important. For example, even for three dipoles that do
not build a regular triangle the above assumption is wrong.

In spite of the fact that the picture of stable dipolic configuration is not so
clear we see from the above treatment the tendency of lattice dipole config-
urations to be antiferromagnetic and vortex in the ground state.

3 Three-dimensional dipolic

3.1 Degeneracy space and the order parameter

Abetract substance dipolic built from dipoles of the unit length P - ar-
ranged in poinis .7; € R? - and hae various properties that imitate real
physical systems. Real image of the dipolic is a system of hard spheres with
paint dipole moments in their centres. The transition to infinite medium is
nontrivial in this system. After such transition one can judge about topo-
logical properties of the dipolic. Before we build the order parameter, we’ll
define the degeneracy space. Let's stop on the case of strictly defined ground
state of the dipdlic with simple cubic lattice. As microscopical discontinuity
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in orientations is repeated with the period 2a, we’ll glue eight spheres. The
result of this procedure depends on the way of gluing. We take the direction
of one out of eight dipoles as the degeneracy parameter. To be more exact
.1 = (sin # cos ¢, sin #sin ¢, cos ¥). Probably the sphere S? is the degeneracy
apace of one moment .7;. Let’s consider Hamiltonian (1) contraction into
configurations class with the period

H{P}) ~ H(Br, o Po)|2ar P €SP (55)

As vertices of a cube are not marked out we demand the contraction (55)
symmetry. It means that

H('ﬁju"'v ﬁn) = H("i"lv""ﬁl) (56)

for any rearrangement (ji, ..., js) of the elements {1, ..., 8}. After that domain
of Hamiltonian definition becomes not Cartesian product of spheres but its
symmetrization which is isomorphic to the complex projective space CPs.

Symm IO, S ~CPs. | (57)

A set of eight nonlabeled vectors in the point (57) - or which is the same, a set
CP; of polynomial roots of the 8th order - is compact and free from affiniza-
tion. The sphere Sy in CPg is a nontrivial two-dimensional homological
class, i.c. it can’t be contracted to a point remaining in space CPs . Notice,
that the degeneracy space in the set of configurations (82 x ... x S}) before
symmetrization is also a nontrivial two-dimensional homological class. Obvi-
ously (57) is the baais for the transition from a lattice dipolic to continuous
medium. Not all configurations in CPs are equally probable due to dipole
interaction. For a spherical dipolic having a simple cubic lattice g = (A, k1)
the ground state can be written as [18]

=, = (=1 sindcos
nl:|  Phy=(-1"sndsing
Py = (—1)**cos ¥

(58)

Foursublattice microvortex structure of the ground state (58) specifies a te-
trahedron 7 on a set of CPy configurations. Denoting

a=sinfcosd, b=sin?sing, c¢=cosd, (59)
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we have

131 =ﬁooo=(,dqbe¢)= Ps-‘-qu
Pz =13100=(as"5o'-‘~) =136= Pou
P, =Py =(-a,-bc)=F = B
s = Poyo = (—a,b, —C)=Pa =P101

T: (60)

where a* + 02+ 2 = 1.

A regular tetrahedron (60) fully presents dipole order of the ground state and
has outstanding features. The parallelepiped II, in which the tetrahedron is
inscribed. crosses coordinate axes in the way whereas z, y and : run through
faces centres and parallel to the ribs of II. Tetrahedron ribs are diagonals
of faces of the tetrahedron inscribed in the sphere with S$? border. The cen-
tres I, B? and T coincide. Two-parameter tetrahedron family {7} is a
subset CP, C CPs. The tetrahedron 7 is an order parameter and its de-
pendence on the degeneracy parameter is defined by (60). Long range order
in the above system exists only at the temperature T" = 0, whereas at any
T > 0 long range order is destroyed according to Bor-Van Leven theorem
[24]. This order parameter might be useful in the analyses of phases, for
instance, Berezinsky phase [13, 32]. when there is certain behavior of corre-
lation functions in the absence of long range order. We think it necessary
to make mathematical analyses of the order parameter as the way of corre-
lation destruction in the transition from ground to Gibb’s states one should
investigate using metastables with the period 2¢ and distribution functions
on a set of tetrahedrons {7}. It is clear that the ground state destruction
is connected with several mechanisms such as tetrahedron abrupt reduction
in antiferromagnetic, nematic states; tetrahedron separation from crystal-
lographic axes; tetrahedron distortions up to isotropic paramagnetic state,
when any configuration on CPj is equiprobable.

Let us investigate first a set of symmetrized configurations on CP; . We
examine the ground state, keeping in mind that its destruction will be con-
nected with metastables with a period 2a having the lowest energy. Let’s use

stereographic projection

41 =r. (61)
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For the transition from a complex variable : to (59) we use the following
formulas

2(z +37) 2z —73) |2]2 — 1) .
a=— ~, b= -, ¢ = —. 62
1422 14|z 14 |z (62)
Using (61) and tetrahedron properties (60) we introduce variables
= ; b gy =& _ ;b
1= ﬁ tigr n < l::-c ) (63)
o= =0 _ ;. b — —a 3 ;b E
BT I Tl AT T3 T e
It is easily seen that
n=t =it =t = ~f]t]*.(4.10) (64)
We introduce new variables by means of Viet theorem
01 = —{z1+ 20+ 2+ ),
ga=nntnztanzt 2+ it 5, (65)
O3 = (_212223 + 212324 + 232324). )
Ty = 2122232%. .
As
M (z—z)=+0+ 022 + 032 + 04, (66)
then we use (64) and have
0y=0, 0= —*(1+F). 0, =0, 0, =¢t*T". (67)

Coordinatization of CP, by means of (67) let us see the nature of low en-
ergy metastables with a period 2a. Due to (67) a set of the ground state
configurations are compared with a set of all polynomials

{z [ -1 +T2 +£7]), | (68)

taken as "gzero” reading on the set of all polynomials (66). One can see
true analogy of (68) with free energy expansion in a series according to the
order parameter and which specifies the form of a functional. It is obvious
expression is obtained by substituting (59) and (61) in (68).

Different conditions of connection of sublattices with each other and with
coordinate axes would give different functions on CP3 and therefore would
specify correlation function decay. Dipolar local order parameter T may be
specified as tensor field 7(§) in the spirit of the crystal ordering theory.
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3.2 Topological metastable structures without discli-
nations

We set the family of pairwise hooking curves along which the tetrahedron
(60) is preserved. For this reason we consider homotopic nontrivial mapping
R3 ¢ S*® — S?. This mapping is Hopf mapping.

Let (& +1&2, £ +1€,) is the coordinates of the complex space C, a+ib €R C
S? - the point in S?, that characterizes a complex straight line ¢ running
through 0.

The condition

L+ib=(a+d)&E+E) (69)
is equivalent to
§ = afs — b&, -
& = 063 + ale. (70)
Let
2z 2y 2z 1-|r?

El = 1+erv €2= 1+|3’|2’ 63 = 1+lr|27 64“_‘ 1+|"P .
is the mapping opposite to stereographic projection, i.e. it fulfils R:cS*cR*~C?
embedding. Then a circle resulting from section of the sphere S* = {£+&3 +
€3 4 £2 = 1} by the straight line (70) will turn after stereographic projection
into a curve

(71)

5 = aft; - biE

- (72)
Hy = by + ol
orwith [rP =23+ 2 4 22
Az —ar) = =b1—-1r7) (73)

2y -b:)=a(l1-r%

This system of equations specifies the family of pairwise hooked curves along
which a tetrahedron is the same. Two-parameter family of 2 order closed
curves (73) is ellipses without a propeller in the space and they completely
fill R® evervwhere. One of the ellipses that goes through the point oc is
degenerated and becomes a straight line (axis z). From (73) we find obvious
form of the ”magnetization vector” .7t = (my, my.m;). namely vector field
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#(z,y,z) , which is constant for every level line, specified by the ellipses
{73). For this purpose we resolve (73) with respect to a and b:

_ ass—g(1—s*)]
0= "aT(1—r0)
b= A2ys+a{l—e?)

- +(1-r

(74)

Now we embed the complex plane C of variables « + b by means of stereo-
graphic projection into a unit sphere

§? = {(my.mg,m;) ER® : mi+mi+mi=1}.

We have

2a 2b a?+b6 -1

2 = —— e my= g (T
METTATR T 1r@4 b 0 a4+ (78)

Representing from (74) in (75) the expressions for a and b through z,y, z we
get vector field .72(z, y, 2) obvious form:

ml('?’ y,0) = (T’:;!')?[—y —2zr 4 yr?. _
ma(z.y. 7) = ()l + 2y — 2%}, (76)
mslz, 3, ¢) = =1+ (g "122" + 7],

Radian measure

b)Y
Sl P (77)
results from R® C S C R* =~ C? embedding and effectively determines a

topological "charge”.

Thus, we built the topological saliton without parameters with Hopf invariant
which is equal to one. It can’t be transferred into dipolar ground state by
means of continuous transformation. ’

At this paint we conclude the discussion about particle like excitations in
a dipolic. We realize that Hopf soliton may not provide the minimum to a
functional from gradient energy. The obtained soliton may result from an
eigenfunction of Schroedinger operator. We hope that nice properties of Hopf
soliton fully describe the physics of metastables in the dipolic.
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Conclusions The article deals with geometrical characteristics of balanced
lattice dipolar configurations.

The analyses of the problem of conditionally converging dipalar sums showed
that the basic idea in the dipolar ground state theory is in the necessity of
introducing the lattice. Otherwise the ground state may not exist. Strictly
speaking, using the results obtained on lattice systems in the problem of
amorphous dipalics is a nontrivial procedure which demands new theoretical
and experimental approaches.

In the analytical study of two—dimensional lattices from three—dimensional
dipolar sources the usage of methods of complex variable function theory
appeared to be effective and led in some cases to formulas in a closed form.
Difficulties of taking into account all with all dipolar interactions do not
always allow top fulfil up to the end analytical calculations. A probable
statement about impossible continuous degeneracy in finite two—dimensional
dipolics in spite of introducing in them the lattice structure. This result
is important for the understanding of binary electrical level forming from a
discrete system of charges. :

The existence of antiferromagnetic state and vortices appeared to be the main
tendency. The main reasons of dipolar lattices ground state were classified.
However, the problem of disproportional and modulated configurations in
oblique angled lattices has not yvet salved. The methods developed in the
article allow us to analyze this problem in future.

For three-dimensional cubic dipolic we obtained degeneracy space and built
microscopical order parameter that coincides with macroscopic order param-
eter in the ground state. This is the tetrahedron 7, constructed of the four
nearest dipoles. Using symmetrised product of spheres we built the main
construction for the transition from lattice dipolica to continuous medium.
Continuous medium with complex projective space CPg in every point let us
consider topological metastable structures without disclinations in the dipolic
as well as in the ferromagnetic. The obvious form of Hopf three-dimensional
soliton was found. It is interesting to notice that it does not provide extreme
solution to the gradient fanctional. We managed to obtain an obvious form
of Maxwell equations for the vector field, specified by Hopf soliton.
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