molpit
Login:
Password:
remember
Dipolic

Dipolic is abstract substance of the point dipole moments into the middle of finite size spheres. The dipole-dipole interaction of everyone with everyone determines the fundamental restless state of the dipolic, which, with an infinitesimal perturbation, can become ground stable (often infinitely degenerate) or metastable. All physical properties of dipolic, i.e. the basic restless state, ground state, metastable states, inner motions and phase transitions are caused only by dipole-dipole interaction. The importance of the dipolic model is based on its stability after an infinitesimal perturbation, multiple phases, and the possibility of a complete theoretical analysis. In addition, the dipolic serves as an excellent model for many real phenomena determined by dipole interaction forces.

Диполик – это абстрактное вещество с точечными дипольными моментами в середине сфер конечного размера. Диполь-дипольное взаимодействие всех со всеми определяет фундаментальное беспокойное состояние диполика, который при бесконечно малом возмущении может становиться устойчивым основным (часто бесконечно вырожденным) или метастабильным. Все физические свойства диполика, т.е. беспокойного состояния, основного состояния, метастабильных состояний, внутренних движений и фазовых переходов, обусловлены только диполь-дипольным взаимодействием. Важность дипольной модели основана на ее устойчивости после бесконечно малого возмущения, многочисленных фаз и возможности полного теоретического анализа. Кроме того, диполь служит прекрасной моделью многих реальных явлений, определяемых силами дипольного взаимодействия.

The introduction and definition of dipolic were made in the below preprint of 1991.

The start of this project is made by publication:
Belobrov P.I., Ermilov I.V., Tsikh A.K. Stable and ground state of dipolic // Preprint TRITA/MAT-91-0020 (June 1991), Department of Mathematics, Royal Institute of Technology, S-100 44 Stockholm, Sweden, 1991, 25 p. Preprint

There are more details (in Russian) in the Habilitation Thesis: P.I. Belobrov. Physical Models of Supramolecular Self-Organization (1996).

New greate steps at "Hopfions in modern physics" are made after H. Hopf (1931) and are described in the site: http://www.hopfion.com/
But we seems in first wrote the analytical soliton for Hopf solution in 3D with Hopf charge one. See formula (76) in the preprint Dipolic1991.pdf

Novel application of dipolic are analized into the paper
Aranson I.S. Active colloids // Phys. Usp. 56 (1) (2013).
Find the paper here http://ufn.ru/ru/articles/2013/1/f/
with video abstract for article by Igor S. Aranson.

© International Open Laboratory for Advanced Science and Technology — MOLPIT, 2009–2025